

 [image: [Book cover]]

 Voyager and Fortran 5

 ... and Other Assorted Information About the Voyager Spacecraft

 Alex Measday

 www.geonius.com
calexm5y@gmail.com

 2024

 Latest Update: Voyager and Fortran 5

 Cover Picture:
Mariner-Jupiter-Saturn 1977 Spacecraft Artwork, 1975
(Wikimedia,Public Domain from NASA)

 Voyager and Fortran 5 by Charles A. Measday is licensed under Creative Commons Attribution 4.0 International[image: Creative Commons CC logo][image: Creative Commons BY logo] (CC BY 4.0)

 This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.

 Table of Contents

 	Introduction

 	How It Started

 	Wired

 	Popular Mechanics

 	What is Fortran 5?

 	Fortran V?

 	So What Language was Used?

 	Why Assembly?

 	The CPUs

 	Memory Constraints

 	Performance Constraints

 	Simulators & Other Random Thoughts

 	Shoestring Space Exploration

 	Sequences and Simulators

 	AACS, HYPACE, and HYBIC

 	Flight Computer Electronics

 	CCS Computer

 	AACS Computer

 	FDS Computer

 	FDS Image Compression

 	FDS Memory Problems

 	November 2023 Memory Anomaly

 	Earlier Anomalies

 	Miscellaneous Information

 	Ben-Hur Rides Again!

 	Suzanne Dodd: Early Voyager Years

 	Larry Zottarelli

 	Real Programmers & Nightmare Networkers

 	Clash of Viking Mainframes

 	Bibliography

 	Change Log

Forget Crazy Earth,

 Look to the Future:

 Voyager and Fortran 5

 Early 2024

 (Updated: 23-Oct-2024)

The Voyager spacecraft,
Voyager 1 and
Voyager 2, were
not programmed in Fortran 5. Or in any
Fortran for that matter. This widely accepted misbelief can be traced back
to a widely misunderstood statement in a single magazine article.

1. Introduction

2. How It Started

3. What is Fortran 5?

4. Fortran V?

5. So What Language was Used?

6. Why Assembly?

Simulators & Other Random Thoughts

AACS, HYPACE, and HYBIC

Flight Computer Electronics

FDS Image Compression

FDS Memory Problems

Miscellaneous Information

Bibliography

 This is a personal project of mine. Everywhere I turned the past few
 years, someone was saying that the Voyager spacecraft were programmed
 in Fortran 5. I didn't believe it. I gathered a few links here and
 there, but, in early 2024, I sat down and did some serious online
 research. Well, kind of serious and not particularly systematic.
 This is what I found. It's wordy, it rambles, and the writing is
 somewhat uneven, but I hope you'll find the information useful or
 at least follow the links in your own explorations. There are many
 fascinating aspects of the Voyager project that one normally might
 not think of and only learn of by accident. I think you'll find
 that even casual browsing can yield rich rewards!

 Sections 1 through 5, about 10 printed pages, are specifically about the
 Voyager-Fortran 5 meme. Section 6 adds another 5 pages and seeks to
 prevent memes such as this from arising. The remaining tens of pages began
 as simply a source of more detailed information about things presented in
 the earlier sections, things such as command sequencing and the AACS
 computer. However, I gradually added more unrelated information such as
 the flight computer electronics because (i) the information was interesting
 and, as a justification in hindsight, (ii) collecting this information in
 one place will save other Voyager tech fans the effort of, for example,
 tracking down and connecting nuggets from obscure posts in lengthy online
 discussions.

 You'll find phrases like "apparently", "perhaps", "it seems", and
 "it suggests" throughout the text. They mean I can't definitively
 assert what the sentence is about to say. For example, a great deal
 of my discussion of sequencing and simulation is based on McEvoy's
 Viking Orbiter paper. There is no comparable Voyager paper that
 provides his level of detail, so I can't with certainty say that
 something done on Viking is done in the same way on Voyager—it
 just seems likely! These uncertainties do not affect the
 fact — and central thrust of this piece — that
 the Voyager onboard computers were not programmed in Fortran.

 My background: I'm a retired software developer. In the 1980s, I worked
 on the image processing ground system for NASA's LANDSAT 4 and 5 remote
 sensing satellites; we used VAX/VMS Fortran 77. In the late 1980s and
 early 1990s, I worked on a configurable, Unix workstation-based, control
 center for NASA's Goddard Space Flight Center, mostly written in C. In
 the late 1990s through the mid-2000s, I worked on a similar system in C++
 for commercial satellite fleets. (The latter was originally based on the
 former thanks to NASA's generosity in sharing technology with industry.)
 My brother, Andy, got interested in ham radio when we were in junior high
 school and I picked up a rudimentary knowledge of electronics and radio
 through osmosis. (Andy's got an Extra Class license; originally WA3RML
 from Maryland, he's now WA5RML in Texas.)

 Acknowledgements: The bulk of this page was written in early 2024.
 In the swirl of useful and not-useful papers and articles I read or skimmed,
 bouncing here and there on the web, I generally didn't remember how I came
 across individual sources and therefore I was unable to properly credit
 people through whom I found many of these sources. Later in the year, I
 began being more meticulous about recording the sources of the sources in
 my (disorganized) offline notes and then crediting them on this web page.
 My sincere apologies to those I failed to acknowledge in the past and to
 those I may inadvertently fail to credit in the future. And many thanks
 to all those who post good or tentative bits of information in online
 discussions and blogs.

 The title of this piece is constructed from the titles of two songs by
 Fortran
 5 (Wikipedia) released on their 1991 album, Blues:
 "Crazy Earth"
 (YouTube) and
 "Look To The
 Future" (YouTube)!

1. Introduction

The Voyager program took advantage of a rare planetary alignment to send
two spacecraft on a tour of the solar system's gas giants: Jupiter, Saturn,
Uranus, and Neptune. In addition to the cameras and scientific instruments,
each Voyager has 3 computers (plus their backups, for a total of 6):

	
 Computer Command Subsystem (CCS) - is the basically the master
 controller of the spacecraft. As such, it "provides sequencing and
 control functions. The CCS contains fixed routines such as command
 decoding and fault detection and corrective routines, antenna pointing
 information, and spacecraft sequencing information."
 (Voyager: The
 Spacecraft, JPL) The CCS CPU is the same as used on the Mars
 Viking
 Orbiters.

	
 Attitude and Articulation Control Subsystem (AACS) - "controls
 spacecraft orientation, maintains the pointing of the high gain antenna
 towards Earth, controls attitude maneuvers, and positions the scan
 platform." The cameras and a couple of other instruments are mounted
 on the scan platform, hence adjusting their orientation must be done
 in conjunction with the spacecraft's orientation.
 (Voyager: The
 Spacecraft, JPL) The AACS computer uses a modified CCS CPU and is
 not the at-the-time experimental HYPACE computer. The latter
 claim turned out to be an unexpected rabbit hole; see
 "AACS, HYPACE, and HYBIC" below for more details.

	
 Flight Data Subsystem (FDS) - "controls the science instruments and
 formats all science and engineering data for telemetering to Earth."
 (pre-launch
 Voyager
 Press Kit, August 4, 1977, p. 22, PDF) The FDS used a custom-designed
 CPU.

 Dr. James E. Tomayko's
 Computers in Spaceflight: The NASA
 Experience (1988) is an oft-cited, authoritative (and
 eminently readable) source of information about computing systems
 in space up until 1988. The link takes you to the Bibliography
 where further links to specific sections of the report can be found.
 Chapter Six, Section 2 gives the history of and details about the
 three Voyager computers. (Since the CCS computer was borrowed from
 Viking, also see the more detailed description of the Viking Orbiter
 CCS in Chapter Five, Section 6.)

And, expanding our vocabulary:

	
 Flight Computers - are the computers onboard a spacecraft, like
 the three above.

	
 Flight Software - is the collection of programs and routines that
 run on the flight computers. Like any computer program, the flight
 software is composed of low-level CPU instructions such as
 "Load CPU register A with the value at memory address 1234". Flight
 software engineers write and maintain these programs.

	
 Spacecraft Commands - are binary commands that perform operations
 on the spacecraft. Uplinked to the spacecraft by mission control, they
 are not CPU instructions. In a spacecraft without computers,
 the commands are fed to a hardware decoder that effects the desired
 operations. In a spacecraft with computers, the software interprets
 the commands and runs the sometimes complex code needed to perform
 the operations. (Think of the Unix bash shell, where the
 "flight software" is the bash executable and the "spacecraft
 commands" are the command-line commands: cd, ls, etc.)

	
 Command Sequences - are sequences of spacecraft commands uplinked
 to the spacecraft as a singular bundle. A given sequence may be executed
 immediately, executed at a scheduled time, or executed only when the
 spacecraft's hardware or software detects some condition. Sequence
 engineers design and develop command sequences. (A simplified
 definition of sequences; see
 Sequences and Simulators below
 for more details.)

In the telemetry data radioed back to Earth:

	
 Engineering Data - has to do with the health and operation
 of the spacecraft; e.g., temperatures, power levels, spacecraft
 attitude, and readouts of flight computer memory for debug purposes!

	
 Science Data - is that returned from the scientific instruments.
 The prime example is the image data from the cameras.

 [image: Voyager 1 Enters Interstellar Space]

 "This artist's concept shows plasma flows around NASA's Voyager 1
 spacecraft as it approaches interstellar space."

 (Source: "Voyager
 1 Enters Final Region of Our Solar System Before Interstellar
 Space", Mike Killian, AmericaSpace, 2013.)

A brief Voyager timeline (the fly-by dates are actually years of closest
encounters):

 1977 - Voyager 2 and then Voyager 1 launched.
 1979 - Both Voyagers fly by Jupiter.
 1980 - Voyager 1 flies by Saturn.
 1981 - Voyager 2 flies by Saturn.
 1986 - Voyager 2 flies by Uranus.
 1989 - Voyager 2 flies by Neptune.
 2004 - Voyager 1 crosses the termination shock.
 2007 - Voyager 2 crosses the termination shock.
 2012 - Voyager 1 enters interstellar space.
 2018 - Voyager 2 enters interstellar space.

After the 1980 encounter with Saturn, Voyager 1 angled north
from the ecliptic (planetary) plane at about 35°. After the 1989
encounter with Neptune, Voyager 2 angled south of the ecliptic
plane at about -48°.
(Voyager
Fact Sheet, JPL)

Entering interstellar space means the Voyagers have emerged from the
heliosphere,
the region in which solar winds predominate. The spacecraft have
not yet escaped the Solar System, as the Sun's gravity still holds
sway. That will take another 30,000 years until the spacecraft
cross the outer edge of the hypothetical
Oort Cloud!

For a real treat, see the real-time
Voyager Mission
Status! I noticed that Voyager 1's distance from Earth
was rapidly decreasing (!) while Voyager 2's was
slowly increasing. At the same time, both spacecraft's distances from
the Sun were increasing at a constant rate as expected, both at about
10 miles every second. I eventually figured this out. (Completely
missing, like an idiot, the "Distance from Earth" link that pops up
an explanation!) Earth is traveling around the Sun at nearly twice
the speed of the Voyager spacecraft. For half of its orbit, Earth
will be moving towards, for example, Voyager 1 and is
thus "catching up" to the spacecraft. (That's a rough, simplified
explanation. Given the Earth's and Voyager 1's full 3-D
velocities, you must separate out the components along the changing
Earth-Voyager 1 axis. When the Earth's speed along that
axis exceeds Voyager 1's, the distance will decrease.
So the distance will decrease on only a portion of that half-year
half-orbit.)

And the DSN Now page shows
the real-time status of the Deep Space Network antennas and which spacecraft
they are talking to, VGR1 and VGR2 being the Voyager
spacecraft.

 [image: Suzanne Dodd]
 "Voyager Project Manager Suzy Dodd shows off her
 spacecraft".
 (Source: Bill_D@Flickr)

2. How It Started

Wired

In 2013, Wired published an article based on an interview with
Suzanne
Dodd, Voyager project manager at the time and, currently, also Director
of the Jet Propulsion's Interplanetary Network Directorate. In the article,
the author, Adam Mann, wrote (his words, not a direct quote from Dodd):

 The spacecrafts' original control and analysis software was written in
 Fortran 5 (later ported to Fortran 77). Some of the software is still
 in Fortran, though other pieces have now been ported to the somewhat
 more modern C.

 —Adam Mann,
 "Interstellar
 8-Track: How Voyager's Vintage Tech Keeps Running", Wired,
 September 2013.

My impression upon first reading this was that the ground-system mission
control and science data analysis software was written in Fortran and parts
were later ported to Fortran 77 and C. (I now think Dodd was referring to
mission control-related analysis instead of science data analysis.) I'd
never heard of "Fortran 5", but the rest was unremarkable and tracked with
my own experience. In the early 1980s, I worked on the image processing
side of the LANDSAT-4/5 ground system, programming in Fortran 77 on VAX/VMS
minicomputers. The mission-control developers on the other half of our
cubicle farm at NASA's Goddard Spaceflight Center programmed in Fortran
on DEC-2060 mainframe computers. And, in the late 1980s, I was part of
a small team developing a generic, UNIX workstation-based ground system,
TPOCC, for Goddard — programmed in C, of course!

So, aside from the "Fortran 5" oddity, Mann's article was spot-on and
provided an excellent update for me on the Voyager project. Others,
however, inferred more from the quote and, shortened to one sentence
with the "control and analysis" phrase dropped, a misleading form of
the quote spread in the popular press and in numerous hardware and
software forums. The inference or "meme", easily identified by the
"Fortran 5", is that the Voyagers' onboard computers were
programmed in Fortran, etc., etc., as shown here:

 The initial software program was Fortran 5, then they were reprogrammed
 during flight to Fortran 77, and finally C.

 —South Australian Doctor Who
 Fan Club Inc. (SFSA), "Voyagers disco party!",
 The Wall of Lies, No. 169, Nov-Dec 2017, p. 2.
 (4-page newsletter,
 PDF)

(I'm not dumping on the fan club. For my example, the juxtaposition of
Doctor Who and disco practically screamed, "Choose me! Choose me!")

Popular Mechanics

I originally dismissed the following 2015 article in Popular
Mechanics as just another knock-off of the Wired article.
However, I was wrong and, upon rereading it more closely, I have to say
it is a superb article. Based on the author's own phone interview with
Suzanne Dodd, the article is about the Voyager project seeking a new
software developer to replace the soon-to-retire
Larry Zottarelli, "the last original Voyager
[software] engineer". From other information I gleaned from the web, it
appears he was one of the original flight software engineers, joining the
project pre-launch in the early-to-mid 1970s. Don't judge the article by
this isolated quote (again, the author's words, not Dodd's):

 Know Cobol? Can you breeze through Fortran? Remember your Algol? Those
 fancy new languages from the late 1950s? Then you might be the person for
 the job.

 —John Wenz,
 "Why
 NASA Needs a Programmer Fluent in 60-Year-Old Languages",
 Popular Mechanics, October 29, 2015.

Between Wired and Popular Mechanics, I'm starting
to wish Suzanne Dodd had been a bit clearer in these interviews about what
the programming languages were used for. On the other hand, in her defense,
Dodd has spent decades having to and trying to convey scientific and technical
information in a meaningful way to the public and non-tech-oriented journalists
(in general; I don't mean Wenz).

In this particular case, I expect that knowledge of Fortran is
needed for some of the support software, but not for actually programming
the onboard computers. (Keep in mind that Fortran is not hieroglyphs!
Moderately experienced programmers should be able to pick it up fairly
easily.)

 Aside: Algol? Really?! I have long taken some small measure of pride
 in the fact that I am one of the few people in the U.S. who have actually
 programmed in Algol! When I first caught the computer bug in 1977, I read
 one of Daniel
 McCracken's Fortran books and his Algol book ... before I even took my
 first computer class and got access to a computer. In two classes where
 the other students used Fortran, I used Algol because I wanted to try it
 out — I liked it. This was the
 Norwegian
 University (NU) Algol 60 compiler on a Univac 1100-something mainframe.

 Unrelated aside: In the Popular Mechanics article, Wenz
 contrasts the Voyagers' programmability with that of other spacecraft
 with fixed-hardware operation sequencers, such as ISEE-3. The generic,
 UNIX workstation-based, misson control system I worked on at Goddard,
 TPOCC (mentioned above), was used to replace ISEE-3's Xerox Sigma-based
 (if I remember correctly) control system in the early 1990s! Launched
 in 1978, ISEE-3 was repurposed in 1982 as the
 International
 Cometary Explorer (ICE) and underwent a complex set of maneuvers
 leading to a rendevouz with Comet Giacobini-Zinner in 1985. (See this
 cool
 graphic of the maneuvers.) (The mission control system was called
 the ICE/IMP control center, so it was controlling two spacecraft, the
 second probably being the
 Interplanetary
 Monitoring Platform, IMP-8.)

3. What is Fortran 5?

A distinct detail in every replication of this meme is "Fortran 5". I haven't
used Fortran since the 1980s, but the unknown-to-me Fortran 5 was an immediate
red flag. In all the online discussions of this subject that I've seen,
no one questions "Fortran 5". Even in a
Fortran
Discourse thread where the users are very knowledgeable about Fortran.
It can't just be me ... please!

On Wikipedia's Fortran page, Fortran 5 is called an
obsolete
variant (i.e., non-standard version) of Fortran:

 Fortran 5 was marketed by
 Data General
 Corporation from the early 1970s to the early 1980s, for the
 Nova,
 Eclipse,
 and
 MV
 line of computers. It had an optimizing compiler that was quite good for
 minicomputers of its time. The language most closely resembles FORTRAN 66.

Data General's Nova
840
minicomputer was introduced in 1973; a contemporary DG brochure,
"840:
The Loaded Nova", touts the Fortran 5 compiler in its feature list:

 Fortran 5, an extremely thorough, multipass compiler that produces
 globally optimized code that's nearly as efficient as assembly
 language code

And Data General advertised Fortran 5 with
"It's
a Real Pig": "Pigs are the Smartest Animals in the Barnyard"! The
Fortran 5 compiler was slow because it was taking the time to produce
smaller and faster executables.
(Flickr
image)

Data General's 1978
Fortran
5 Reference Manual
(PDF)
lists 1972 as the first copyright date, incidentally the year the Voyager
project officially began.

 [image: PC or Mac? No, UNIVAC!]
 "PC or MAC? UNIVAC.",
 The Piranha Club by
 Bud Grace.

 (Source: James
 McDonald Stewart's Response to Fankuchen Award 2001)

4. Fortran V?

I've seen no mention of Data General computers in connection with the Voyager
project in my research, so the use of Fortran 5 on the project seems highly
unlikely.

My guess is that, when speaking to Wired's Adam Mann, Suzanne
Dodd said "Fortran Five", meaning "Fortran Roman Numeral Five",
or Fortran V. This is consistent with Fortran II being known as "Fortran Two"
and Fortran IV as "Fortran Four".
(Fortran III,
in case you're interested, was an unreleased, internal IBM compiler dating
to 1958.)

Fortran V, like Fortran 5, is one of Wikipedia's non-standard,
obsolete
variants of Fortran:

 [In addition to Control Data Corporation,] Univac also offered
 a compiler for the 1100 series known as FORTRAN V. A spinoff of Univac
 Fortran V was Athena FORTRAN.

Now things fall into place. Remember that Suzanne Dodd spoke of "control
and analysis" software. She joined the Voyager team in 1984 as a sequence
engineer in the lead-up to Voyager 2's January 1986 fly-by
of Uranus. These engineers designed/developed sequences of spacecraft
commands for upload to the Voyagers ... work done on one or more Univac
1100-series mainframe computers. From an interview:

 DODD: When I first started, I started on a— I don't even remember
 the name of it, but I do recall it had an eight-inch floppy drive.
 That was our command medium, an 8-inch floppy drive. Not a memory
 stick, not even a CD. When we did these designs and plots that
 showed—there was a program that you could design an observation,
 like you want to make a mosaic over Uranus, and you could lay out the
 observation, and then it would tell you what the commands you need
 to do it are. That was done on a UNIVAC computer,
 so kind of more of a mainframe refrigerator-size computer.

 David Zierler,
 "Suzy
 Dodd (BS '84), Engineer and Deep Space Pioneer", 2023

 Caltech Heritage Project, June 9, 2023.

I found more specific information about JPL's mission control computing
facilities in a pre-launch press kit
(Voyager
Press Kit, August 4, 1977, pp. 106-107, PDF):

	
 Mission Control and Computing Facility (MCCF) - three IBM 360-75
 mainframes used for the day-to-day operations of the spacecraft,
 including command uploads and tracking.

	
 General Purpose Computing Facility (GPCF) - three Univac 1108
 mainframes used for "navigation and mission sequence systems ... [and]
 prediction programs and detailed spacecraft engineering performance
 analysis". These are the systems that Suzanne Dodd would have used.
 (Assuming JPL hadn't upgraded the 1108s to newer models in the
 intervening 7 years.)

	
 Mission Test and Computing Facility (MTCF) - "three strings of
 UNIVAC and Modcomp computers to receive, record, process and display"
 the engineering and science data downloaded from the spacecraft.
 (The Univac computers here were minicomputers such as the
 UNIVAC 1230. The
 Modcomp minicomputers
 included the MODCOMP II and MODCOMP IV; for some reason,
 Tomayko [Chapter 8, Section 3, p. 265] calls them
 the ModComp 2 and 4, respectively, though everyone else on the web uses
 the Roman numerals!)

Sun Kang Matsumoto is a CCS flight software engineer who joined the Voyager
program in 1985, also, like Dodd, in the ramp-up for the Uranus fly-by. In
a 2016 paper about the Voyager Interstellar Mission (VIM), she gives some more
details about the evolution of Dodd's "control and analysis" software from
Univac to Unix (and thus from Fortran to C, presumably):

 During the prime mission and early VIM, Voyager had been using the
 JPL-developed software programs called SEQTRAN (to generate sequences)
 and COMSIM (to simulate sequences and CCS FSW changes). They ran on
 now-antiquated UNIVAC mainframe computers. Shortly after the start
 of VIM [in 1990], these programs were converted over to more
 modern UNIX-based SEQTRAN and High Speed Simulator (HSSIM). They
 were rewritten to maintain the same functionality of the old SEQTRAN
 and COMSIM, and tailored for VIM. Rewriting and testing required
 significant effort from the developers and the project personnel;
 however, the end result is much improved speed and efficiency.

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 4, 2016 SpaceOps Conference, Daejeon, Korea.

SEQTRAN and COMSIM are programs Dodd would have used as a sequence engineer
in the 1980s. I'm a connoisseur of good program names, so I can't fail to
mention Matsumoto's mention of two new programs: VAMPIRE (Voyager Alarm
Monitor Processor Including Remote Examination) and MARVEL (Monitor/Analyzer
of Real-time Voyager Engineering Link)! Matsumoto's paper is well-worth
reading not only for the technical information, but because she provides
a valuable portrayal of how the Voyager team has managed to overcome, by
hook and by software crook, the very real problems of aging hardware at a
great distance. And have done so despite steep technological and budgetary
challenges.

I think (or hope) it is clear by now that, in the 2013 Wired
article, Suzanne Dodd was referring to the ground system software and not
the software running on the flight computers in space.

Okay, Univac and Fortran. But what about Fortran V? I could only find
one instance of "Fortran V" being explicitly mentioned in connection with
a Voyager mission operations program. (I do not include academic papers
whose authors used Fortran V programs to analyze the Voyagers' science data
at institutions outside of JPL; e.g., universities.)

The scarcity of "Fortran V" and "Voyager" on the web is not
surprising. Most programming languages maintain backwards compatibility
between versions, so, for example, a Fortran IV program usually can be
recompiled with a Fortran V compiler without error and with identical
functionality. Consequently, programmers do not in general specify versions
when speaking about languages. A C programmer doesn't say, "I wrote this
program in C89 and later ported it to C99." Instead, it's just an unadorned
"C program". (This is not a slight on the Dodd-Mann remark.)

Also, Univac's Fortran V compiler was available as early as
1966,
so it probably would have been the default Fortran compiler on Univac mainframes
throughout the 1970s. Many Fortran users may therefore have been unaware that
the specific version they were using was Fortran V. (The documentation that I
could find online showed that a generic @FOR invoked the Fortran V
compiler and @FTN invoked the ASCII Fortran compiler discussed in
the second aside below.)

 Aside: I anticipate eventually having to eat my pontificating words on
 programming language versions! In the meantime ... I couldn't find an
 online copy of Univac's Fortran V manual, but the 1970
 UNIVAC 1108 System
 Description (Section 10, p. 7) had this to say: "FORTRAN V,
 being an outgrowth of the earlier FORTRAN languages (in particular,
 UNIVAC 1107 FORTRAN IV and IBM FORTRAN IV as announced in IBM form
 C-28-6274-1), accepts these languages as compatible although the
 reverse is not necessarily true."

 Aside: The transition to Fortran 77 on a Univac mainframe would have
 been non-trivial. Univac's Fortran 77 compiler, ASCII FORTRAN, largely
 accepted Fortran V source code with a few, documented, mostly
 Univac-specific exceptions. The big problem, I think, would have been
 character sets. Univac's 36-bit mainframes used 6-bit
 FIELDATA
 characters stored 6 per 36-bit word. The ASCII FORTRAN compiler used
 the incompatible 7-bit ASCII character set. (On the Univac 1108
 computer I worked on c. 1980, ASCII characters were stored as 9-bit
 quantities, 4 per word.) Vanilla character strings in the source code
 would just be converted to ASCII without complaint by the compiler,
 but programs that depended on specific characteristics of FIELDATA
 characters would require changes. That includes programs that must
 read or write FIELDATA-compatible tapes. (I have no experience with
 ASCII FORTRAN, so these are just my thoughts from perusing the
 ASCII
 FORTRAN Reference Manual; Appendix A addresses the differences
 between FORTRAN V and ASCII FORTRAN.)

 Unrelated aside: Circa 1980, I overheard a graduate student remark that
 the shell pipe, |, was Unix's gift to mankind and
 @ADD was Univac's gift to mankind. He was right!

The Voyager ground-system software I found that was explicitly stated to
have been written in Fortran V is the Orbit Determinaton Program (ODP),
which was also used on other missions. The mathematics in the following
1983 paper is way beyond me, but it establishes the ODP's host system:

 To give an idea of the computational burden that is involved, consider a
 typical radiometric SRIF/SRIS solution with 67 state variables (Table I).
 This model contains only 4 process noise states (line-of-sight acceleration
 and 3 camera pointing errors); there are 3500 data points and 132 time
 propagation steps. The problem run on a UNIVAC 1110, in double precision,
 used 275 CPU s[econds] for filtering; smoothed solutions and covariance
 computation used 265 CPU s[econds]. The entire run scenario including
 trajectory variational equation integration, observable partials
 generation, solution mapping, and generation of smoothed residuals used
 4320 CPU s[econds].

 ...

 We note in closing this factorization algorithm discussion that the SRIF
 and U-D algorithms that were used in this application have been
 refined and generalized, and are commercially available in the form of
 portable Fortran subroutines.

 —James K. Campbell, Stephen P. Synnott, and Gerald J. Bierman;
 "Voyager
 Orbit Determination at Jupiter" (PDF), IEEE Transactions on
 Automatic Control, Vol. AC-28, No. 3, March 1983, pp. 259-261.

For those not mathematically inclined, the paper is still worth skimming
just for the enumeration of some of the esoteric details of the Voyager
spacecraft that they had to account for in the calculations. We learn
what language was used in a 2008 presentation by Lincoln J. Wood of JPL:

 The mainframe computers used include the IBM 7090, IBM 7094,
 UNIVAC 1108, and UNIVAC 1100/81. During the 1980s the ODP was
 transported to minicomputers, with the software maintained in
 both mainframe and minicomputer operating environments to
 fulfill the desires of various flight projects. The ODP
 consisted of 300,000 lines of code as of 1979, with FORTRAN V
 being the primary language.

 —Lincoln J. Wood,
 The
 Evolution of Deep Space Navigation: 1962-1989" (PDF), p. 6,
 31st Annual AAS Guidance and Control Conference,
 2008, Breckenridge, Colorado.

Shortly after writing the above, I came across this entry in NASA's long-gone,
COSMIC software catalog:

 Calculating Trajectories and Orbits

 Two programs calculate the motions of spacecraft and landers.

 The Double Precision Trajectory Analysis Program, DPTRAJ, and the
 Orbit Determination Program, ODP, have been developed and improved
 over the years to provide the NASA Jet Propulsion Laboratory with
 a highly reliable and accurate navigation capability for their deep
 space missions like the Voyager. DPTRAJ and ODP are each collections
 of programs that work together to provide the desired computational
 results. DPTRAJ, ODP, and their supporting utility programs are
 capable of handling the massive amounts of data and performing the
 various numerical calculations required for solving the navigation
 problems associated with planetary fly-by and lander missions.
 They were used extensively in support of NASA's Voyager project.

...

 DPTRAJ-ODP is available in two machine versions. The UNIVAC version
 (NPO-15586) is written in FORTRAN V, SFTRAN, and ASSEMBLER. (A processor
 is supplied for SFTRAN, a structured FORTRAN.) DPTRAJ and ODP have been
 implemented on a UNIVAC 1100-series computer. The VAX/VMS version
 (NPO-17201) is written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER. It was
 developed to run on all models of DEC VAX computers under VMS and has a
 central-memory requirement of 3.4 Mb. The UNIVAC version was last updated
 in 1980. The VAX/VMS version was developed in 1987.

 —NASA Tech Briefs, September 1989,
 p. 33.

A whopping 3.4 MiB of memory required for a lousy 300,000-line program?
Software hogs like that were the reason why we couldn't have nice things
back then ...

 [image: Voyager Art]

 Adam's
 Voyager Spacecraft for
 Kerbal Space Program.

5. So What Language was Used?

Let's ask an actual Voyager flight software engineer what language was and
is used to program the onboard computers. Perhaps the Voyager Fault
Protection and CCS Flight Software Systems Engineer who's worked on
Voyager since 1985:

 Both the AACS and FDS use assembly language. The CCS uses assembly
 language and Voyager-unique pseudo code (interpreter). As a result,
 it is difficult to attract younger programmers to join the project.

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 6, 2016 SpaceOps Conference, Daejeon, Korea.

In the acknowledgements at the end of the paper, Matsumoto thanks fellow
flight software engineer Larry Zottarelli,
now retired, and Suzanne Dodd, among others, for reviewing the paper.
I assume Zottarelli, Dodd, or one of the others would have spoken up
if they took issue with the above paragraph.

 Along with Tomayko's report, Matsumoto's paper was the key source
 for this page and answered many of my questions. Many thanks to
 Vincent Magnin for sharing this link with
 myself and others!

That would be two or three assembly languages: one for the CCS CPU,
possibly a variant for AACS's modified CCS CPU, and definitely another
for the completely different FDS CPU.

The phrase "pseudo code (interpreter)" makes me think of an embedded
scripting language, but Matsumoto is probably referring to executing
uplinked spacecraft commands and sequences. The CCS also must process
internally generated power codes received from the AACS computer:

 A "power code" is a 6 bit message sent to the CCS computer, which may be
 only informational or may cause a power command to switch power to an AACS
 component. Such power switching commands are usually the means by which
 redundant elements are exchanged. These power codes are an important part
 of the fault protection logic, allowing the CCS computer to issue commands
 in response to a fault condition. These commands may be a simple power
 command (A gyro on) or a command sequence which will turn the spacecraft in
 a pattern designed to re-oriented the spacecraft towards the sun from an
 entirely random attitude. Some serious faults result in an OMEN power
 code, which causes CCS to save the next three power codes (normally lost)
 for later analysis.

 Assessment of Autonomous Options for the DSCS III Satellite
 System, 1981

 Prepared for the U.S. Air Force by JPL personnel (Donna L. S. Pivirotto
 and Michael Marcucci?),
 "Volume III:
 Options for Increasing the Autonomy of the DSCS III Satellite" (PDF),
 p. 179, Aug. 6, 1981.

In her paper, Matsumoto discusses a problem with the "power decoder relay
matrix":

 The power decoder relay matrix problem that first manifested in 1998 makes
 commanding of the spacecraft extremely difficult. Basically, the faulty
 decoder may cause an issuance of extraneous power commands in addition to
 the intended command.

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 8, 2016 SpaceOps Conference, Daejeon, Korea.

I wonder if this is the interface used to convey the power codes from the AACS
to the CCS. Later, she describes a patch for this error made to
AACSIN, the CCS routine that she notes receives and processes
power codes, but the specific description of the patch again uses the term,
"power commands".

 	The CPUs

 	Memory Constraints

 	Performance Constraints

6. Why Assembly?

Since so many commenters in discussion forums had no problem with "Fortran 5",
it might be valuable to examine some possible reasons why the flight software
was written in assembly language.

The CPUs

There is not much information available specifically about the Voyager
CCS computer, borrowed from the Viking Orbiter. Fortunately,
Tomayko does provide details about the Viking CCS:

 In general, the design of the processor was exceedingly simple, yet fairly
 powerful, as indicated by the use of direct addressing, a minimal set of
 registers, and a reasonably rich set of 64 instructions. The key is that
 the design placed relatively light demands on spacecraft resources while
 replacing both the programmable sequencer and the command decoder used
 in the Mariners. The fact that the processor was later adopted by the
 Voyager project as its Command Computer and modified for use as the
 attitude control computer is not only a statement of JPL's frugality
 but also a testament to the versatility of the design.
 (p. 157)

 [On the Viking Orbiter, the] Command Computer's central processor contained
 the registers, data path control and instruction interpreter. The machine
 was serial in operation, thus reducing complexity, weight, and power
 requirements. It had 18-bit words and used the least significant 6 bits
 for operation codes and the most significant 12 for addresses, as numbered
 from right to left. This permitted 64 instructions and 4K of direct
 addressing, both of which were fully utilized. Data were stored in signed
 two's complement form, yielding an integer range from -131,072 to +131,071.
 Average instruction cycle time came to 88 microseconds. Thirteen registers
 were in the Command Computer, mostly obvious types such as an 18-bit
 accumulator, 12-bit program counter, 12-bit link register that pointed to
 the next address to be read, and a 4-bit condition code register that
 stored the overflow, minus, odd parity, and nonzero flags.
 (Box 5-3, p. 159)

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Five, Section 6.

Note the 12-bit addresses, giving an addressing range of 0..4095. And note,
in the following, that the Viking CCS flight software engineers masked most
interrupts in routines, thus simplifying code (which reduced memory usage)
and increasing performance:

 Viking Orbiter software had to be written in an assembler, which
 fortunately had relocatable addresses, simplifying the maintenance task.
 The 64 instructions were mostly common to other computers, but there was no
 multiply or divide. There were two sets of loads, stores, increments, and
 subroutine calls: one used during independent operation and one aimed at
 dual operation, so that the two memories could be kept equivalent. Even
 though many interrupts were available, most routines as coded had all but
 the internal error and counting interrupts disabled. Many routines were
 free to run out without being interrupted, in contrast to the highly
 interrupted Apollo and shuttle software. Programmers avoided the memory
 and processing time overhead required to preserve the current accumulator
 and register contents during an interrupt.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Five, Section 6, Box 5-4, p. 162.

The Voyager AACS computer uses a modified CCS CPU (e.g., with the added
index register), so most of the CCS details above apply as well to the AACS:

 JPL's Guidance and Control Section wanted to use a version of HYPACE as
 the computer for the Voyager. However, there was considerable pressure to
 build on the past and use existing equipment. [Edward] Greenberg proposed
 using the same Viking computer in all systems on the Voyager spacecraft
 that needed one. A study showed that the attitude control system could
 use the CCS computer, but the Flight Data System could not due to high
 I/O requirements ...

 Guidance and Control grudgingly accepted the CCS computer on the condition
 it be speeded up. Requirements for active control during the kick stage
 burn meant that real-time control programs would have to be written to
 operate within a 20-millisecond cycle, roughly three times faster than
 the command computer ... Guidance and Control asked for a 1-megahertz
 clock speed but wound up getting about three quarters of that. The
 attitude control engineers also added the index registers that proved
 so useful during the HYPACE experiment. Documentation for the system
 still refers to the attitude control computer as HYPACE, even though
 its heart was the command computer.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, pp. 177-178.

(In Box 6-1 on the next page in the report, Tomayko uses "HYPACE" to refer
to the AACS despite just pointing out that the term is a misnomer.)

The FDS CPU was developed especially to meet the high-rate data handling
requirements of the Voyager spacecraft. Designed by Jack L. Wooddell,
the CPU, in the form of a breadboard prototype, evolved in a collaboration
between Wooddell and flight software engineer Richard J. Rice. For some
reason, I picture Wooddell seated in front of a really large breadboard
with a soldering iron in one hand and a wirewrap tool in the other. Rice
is standing beside him with an open laptop in the crook of his left arm,
his right hand is typing on the keyboard, and the changing flight software
is downloaded via wi-fi to the breadboard computer for testing. Wrong era,
I realize, and Rice may well have been left-handed!

 Voyager's data computer is different from most small general-purpose
 computers in several ways. Its special registers are kept in memory,
 permitting a large number (128) of them. Wooddell also wrote more powerful
 shift and rotate instructions because of data-handling requirements.
 Despite its I/O rate, the arithmetic rate is quite slow, mostly due to
 byte-serial operation. This meant 4-bit bytes are operated on in sequence.
 Since the word size of the machine is 16 bits, it takes six cycles to do an
 add, including housekeeping cycles. If all the arithmetic, logic and
 shifting were not done in the general registers, the machine would have
 been even slower. Reflecting its role, in addition to the usual ADD, SUB,
 AND, OR, and XOR instructions found on most computers, the data computer
 has many incrementing, decrementing, and branching instructions among the
 36 defined for the flight version of the machine.

 Overall, the Flight Data System requires 14 watts of power and weighs 16.3
 kilograms. Its computer needs just one third of a watt and 10 volts, less
 than the power required for a temperature sensor! At first the estimated
 throughput required was 20,000 16-bit words per second. By flight time,
 the instruction execution rate was 80,000 per second, with data rates of
 115,000 bits per second, much higher than previous Flight Data Systems.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, Box 6-2, p. 184.

Note that Tomayko uses the term byte-serial for non-8-bit "bytes", in
this case, when describing how the FDS CPU's arithmetic logic unit processes
16-bit operands 4 bits at a time. The last two sentences about throughput,
while not wrong, seem to ask the reader to compare apples and oranges.

The breadboard prototype began with the same 4K-by-18 plated wire memory
as the CCS computer. I don't know if this means the CPU was originally
designed as a 18-bit processor, but, in any case, it ended up as a 16-bit
processor with 8K-by-16 CMOS memory. From Tomayko's description on p. 183
of Chapter 6, Section 2, my impression is that the CPU used the same
12-bit addresses as the CCS, but two, independent-of-each-other address
lines were added that effectively provided a 13-bit (8K) address range
for instruction fetches and a 13-bit (8K) address range for data accesses.
I don't know if these extra address bits were incorporated into the CPU's
instruction set or if they had to be explicitly set/reset in a separate
operation by the programmer.

If my understanding of Tomayko's description on p. 183 is correct, an FDS
CPU can run code anywhere in its lower and upper 4K words of RAM and,
likewise, can read and write data anywhere in those lower and upper 4K of
RAM. (Accessing a sequence of code or data that crosses the 4K boundary
may or may not be seamless depending on the computer architecture.)
About a month after I wrote the previous paragraph, a commenter in an
online discussion (probably about the Voyager team's workaround for the
November 2023, Voyager 1 FDS memory problem) said that code
is stored read-only in the lower 4K of RAM and the data is stored in
the upper 4K of RAM. I thought either the commenter had a different
interpretation of p. 183 or that JPL simply followed a convention of
maintaining a strict separation of code and data. (Tomayko doesn't
mention read-only.) However, rereading Tomayko another month later
revealed an interesting twist I had overlooked.

Tomayko has three relevant descriptions of FDS memory in Chapter Six,
Section 2:

 ... JPL's project staff believed that equipment would last longer if
 unpowered. Although both CCSs are always powered, rarely are both
 Flight Data Systems running, and both attitude control computers are
 never turned on at the same time. Full bit-for-bit redundancy is not
 maintained in the dual memories. For example, "expended" algorithms,
 such as the deployment sequence executed shortly after separation from
 the booster, need not be maintained. Both memories are accessed by
 the single active processor in each system. The Flight Data System
 keeps a copy of its instructions in both memories, but intermediate
 data and variables can be stored in either memory.
 (p. 174)

 ... Along with the new chips, the memory changed with an expansion to 8K.
 Two "external" address bits were added to flag whether the top or bottom
 half of the memory is being accessed. One bit is used to select the
 memory half used for data access; the other, for the half used for
 instruction access.
 (p. 183)

 ... Also, since the machine can directly address the lower 4K of memory,
 programs were to be kept there, with the upper portion for transient
 data. Later the flight configuration of the computer evolved to one
 processor accessing both memories. Therefore, a copy of the programs
 is kept in the lower portion of each memory, but both upper portions
 are usable by the single processor as a scratch pad. If dual mode is
 required, the memories are separated.
 (p. 185)

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2.

According to the descriptions on p. 174 and p. 185, an FDS CPU runs code
from its own lower 4K of RAM and can read and write data both in its own
upper 4K of RAM and in the other CPU's upper 4K of RAM. So 4K of code
and 8K of data. Note that this is not an increase in physical
memory — each CPU still only has 8K of RAM and the first CPU
is just borrowing 4K from the second CPU. If Tomayko's description on
p. 183 of the two additional address bits is accurate and these bits only
select the lower and upper banks of a CPU's own 8K of RAM, it is not clear
how an FDS CPU addresses the upper 4K of the other CPU's RAM.

 Or, more generally, how any of the spacecraft's CPUs —
 CCS, AACS, or FDS — access their alternate CPU's RAM,
 as the description on p. 174 seems to suggest they are all capable
 of doing. On a related note, how are software (and associated data)
 updates received from the ground routed to and stored in their
 target CPU's memory? For example, if the active CCS computer
 is the one that receives and interprets an upload as a software
 update for FDS CPU 2, how does the CCS computer directly or
 indirectly store the code in FDS CPU 2's RAM?

Dual mode, p. 185, is when both FDS computers are powered up and
running independently of each other. Tomayko states that the two CPUs'
memories are separate in this mode of operation. That may have been JPL's
nominal intention, but the practical needs of the mission would supersede
this convention when necessary. During Voyager 2's flybys of
Uranus and Neptune, the secondary FDS CPU compressed the image data and I
think it would have been most efficient for the primary CPU to directly
access the compressed data in the other CPU's RAM for packaging and downlink
to the ground. (Tomayko's report was published in 1988 in between the 1986
Uranus and 1989 Neptune encounters and he may have written the Voyager section
much earlier.)

The FDS is not the fastest CPU on or off the planet:

 FDS processing speed (1008 machine cycles per 2.5 ms) (p. 4)

 ...

 While faster image readout rates are both desired and recoverable at the
 downlink signal levels available in the extended mission, FDS processing
 speed constrains the compressed image readout rate to no faster that 1
 image per 4 min, the same as was used at Saturn. At this rate the FAST
 compressor in FDS software is compressing 2666 2/3 pixels per second.
 (p. 8)

 Michael G. Urban,
 "Voyager
 Image Data Compression and Block Encoding", 1987

 International Telemetering Conference, October 26-29, 1987,
 San Diego, California.

(Thanks to
LouScheffer
for pointing me to this paper.) The clock rate works out to 403.2 kHz;
if instructions average 5 cycles (e.g., add is 6), that is consistent with
Tomayko's figure of 80,000 instructions per second.

Don't be dismayed by the CCS and AACS CPUs' lack of multiply and divide
instructions and the FDS CPU's slow arithmetic operations. Spacecraft
computers don't crunch numbers. (Out of necessity, in my ground-software
experience up to the mid-2000s. More modern flight computers with more
powerful processors and abundant RAM may have changed this dynamic.)
Sensors and detectors return unit-less raw counts. If these readings
are needed in real-time for autonomous spacecraft operations, it is
faster and more memory-efficient for command sequences or flight software
to work with these counts directly. Otherwise, the ground system can apply
its sizeable CPU, RAM, and disk resources to perform what are called
engineering unit conversions; e.g., the conversion of a hypothetical
temperature sensor's raw 0-255 count to degrees Celsius. The FDS computer
is focused on assembling and formatting science and engineering data for
transmission back to Earth, so fast bit and byte manipulation is more
important than fast arithmetic operations.

Memory Constraints

Wise words:

 The Voyager flight software design was very heavily impacted by the
 limited memory space. Extensive effort and ingenuity was required
 to perform the necessary functions in the available space. The
 flight software was written in assembly code.

 Assessment of Autonomous Options for the DSCS III Satellite
 System, 1981

 Prepared for the U.S. Air Force by JPL personnel (Donna L. S. Pivirotto
 and Michael Marcucci?),
 "Volume III:
 Options for Increasing the Autonomy of the DSCS III Satellite" (PDF),
 p. 179, Aug. 6, 1981.

Words that annoy me:

 The computers aboard the Voyager probes each have 69.63 kilobytes of
 memory, total.

 —Adam Mann,
 "Interstellar
 8-Track: How Voyager's Vintage Tech Keeps Running", Wired,
 September 2013.

An otherwise good article, but ... First, I'm old-school, so the use of
"kilobytes" in the modern 1,000 sense annoys me. Second, the pointless
(and truncated) precision of 69.63 is annoying. Third, the sentence is
wrong because of the confusing wording. The computers don't each
have that much memory. The sum total of memory for all 3 computers and
their 3 backups is 69,632 bytes:

 CCS - 4,096 18-bit words = 73,728 bits = 9,216 bytes
 AACS - 4,096 18-bit words = 73,728 bits = 9,216 bytes
 FDS - 8,192 16-bit words = 131,072 bits = 16,384 bytes

 34,816 bytes
 x 2 for the backup computers

 Total for all 6 computers: 69,632 bytes

When examining the memory limitations from a programming standpoint, expressing
the memory size in bytes can be misleading. The CCS computer, for example,
has 9,216 bytes of RAM. Readers may mistakenly infer from that figure
that there are 9,216 addressable code/data units when, in fact, there are
only 4,096 addressable code/data units, a significantly lower number that
more accurately reflects the limits in which the programmers had to work.

For example, if you want a variable that counts from 1 to 10, you can't use a
memory-efficient single byte and must instead use 2¼ bytes (18 bits).
Yes, you can pack multiple data items into an 18-bit word and I'm sure the
Voyager assembly language programmers did just this, but doing so incurs
added memory/performance costs for packing and unpacking the individual data
items. And, yes, clever coding can reduce those costs and or even avoid the
need for packing/unpacking altogether. Which makes a strong case for using
assembly language rather than a higher-level language like Fortran 5!

A given computer's memory holds the flight software code (CPU instructions),
the software's dynamic variables, and uplinked data (tables, command sequences,
and such). Regarding the AACS, Dr. Tomayko wrote (emphasis added by me):

 The programmers must have done an outstanding job, considering the slow
 processor and limited memory. At launch, only two words of free space
 remained in the 4K of plated wire. Tight memory is now a problem
 because the scan platform actuators on Voyager 2 are nearly worn out,
 and software has to compensate for this during Uranus and Neptune
 encounter periods.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, p. 178.

(Interestingly, Tomayko's 1988 report was published after the Uranus encounter
and before the Neptune encounter! He was writing not a history of the distant
past, but an account of a still very much active and prominent project.)

A big chunk of Voyager 2's CCS memory is consumed by the
Backup Mission Load (BML), identified
by name in Matsumoto's paper and described by Tomayko as follows:

 As pioneered on Mariner X, a disaster backup sequence was stored in the
 Voyager 2 CCS memory for the Uranus encounter, and later for the Neptune
 encounter. Required because of the loss of redundancy after the primary
 radio receiver developed an internal short, the backup sequence will
 execute minimum experiment sequences and transmit data to earth; it
 occupies 20% of the 4K memory.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, p. 176.

In other words, if Voyager 2 loses the ability to receive
commands from the ground, the BML ensures that, on its own, the spacecraft
will continue to perform science operations and to downlink science and
engineering data. The original BML (or an early BML) covered a long
period of operations:

 Since the failure of one of the receivers on Voyager 2, the spacecraft
 has had a "back-up" mission sequence stored in its CCS occupying roughly
 one-half of the available sequence memory. Affording protection of limited
 mission return in the event of a second receiver failure, and thus
 loss of commandability, the back-up mission sequence of Voyager 2 will
 control the spacecraft for about 4-1/2 years (until early in 1986) and
 includes in it a sequence for a Uranus flyby encounter.

 Christopher P. Jones and Thomas H. Risa,
 "The Voyager
 Spacecraft System Design" (abstract), 1981

 pp. 7-8, American Institute of Aeronautics and Astronautics (AIAA),
 16th Annual Meeting and Technical Display
 on Frontiers of Achievement, May 12-14, 1981, Long Beach, California.

Fault protection is very important in a remote unmanned spacecraft and is,
incidentally, one of Sun Kang Matsumoto's areas of expertise. In the 1981
Assessment of Autonomous Options for the DSCS III Satellite
System, Volume III, we learn that 8 CCS
fault routines take up 26.5% of the CCS memory (Table B-3, p. 176) and
9-plus AACS fault routines take up 19.4% of the AACS memory (Table B-4,
p. 180). This suggests that nearly half of Voyager 2's
CCS memory was devoted to the fault routines (26.5%) and the
BML (20%), leaving only a little more than half of the
memory, about 2,200 words, for other CCS functions such as
command sequence storage and processing:

 Fault S/W BML Everything Else!

 Graph of CCS memory allocation (not a diagram of its layout).

This seems hard to believe and the sizes could well have changed up or down
over the decades since this 1981 study and Tomayko's 1988 report.

A couple of weeks after I wrote the above, I came across a 1987 paper by the
Voyager Flight Operations Manager, published between the Uranus and Neptune
encounters. This paper seems to indicate that, on Voyager 2,
there was even less memory available for sequence storage and processing,
about 1,250 words:

 Out of the total CCS memory, the fault recovery routines, other fixed
 routines, and flight reserve leave only about 2,500 words available for
 sequencing of preplanned activities. These activities involve spacecraft
 maneuvers, scan platform movements, data mode changes, data recording or
 playback, scientific observations, etc.

 ...

 Since the failure of one of the Voyager 2 command receivers in 1978, that
 spacecraft has had a back-up sequence stored in its CCS that occupies
 approximately one-half of the available sequencing space. In the event of
 a failure of the remaining receiver, this back-up sequence will execute
 until late in 1989, allowing for limited mission return including
 data-taking during the Neptune encounter.

 Terrence P. Adamski,
 "Command and Control
 of the Voyager Spacecraft" (abstract), 1987

 p. 3, American Institute of Aeronautics and Astronautics (AIAA),
 25th AIAA Aerospace Sciences Meeting, March 24-26, 1987, Reno, Nevada.

(And a couple of more weeks later, I found the exact number: 1,239 words
per CCS computer! See Morris's 1986 paper, p. 173.)

The "fixed routines" would probably have included the core software such
as the executive discussed below, interrupt handlers, communications with
the AACS and FDS computers, ground communications, etc. At the beginning
of the Voyager Interstellar Mission in 1990, a BML was installed on
Voyager 1 too (see Matsumoto's paper, p. 3). It and probably
an updated Voyager 2 BML would have been tailored to the
post-planetary-encounter, interstellar mission. (I suspect that
Voyager 2's original BML, intended for the Uranus and Neptune
encounters, could have been reduced in scope and size afterwards.)

Performance Constraints

I couldn't find much detailed information about the actual flight software.
Both Tomayko and the Autonomous study describe the
cyclic executive
used on the AACS computer to schedule routines (functions) in regularly-spaced
time slots:

 A flow chart of the AACS flight software is shown in Figure 4-14 in
 the main body of this report. Normal program execution occurs in
 three different rate groups having periods of 10 ms, 60 ms, and 240 ms.
 The fourth rate group shown (20 ms) was used only for the Propulsion
 Module operation. Functions requiring high rates such as thruster
 activation and scan platform stepper motor operations are performed
 by the 10 ms logic. The bulk of the attitude control functions, such
 as attitude sensor 'reads' and control law algorithms, are accomplished
 by the 60 ms logic. The 240 ms logic performs a variety of tasks that
 do not require the higher execution rates, such as decoding CCS commands
 from the input buffer, fault monitor and correction, and "power code"
 processing.

 Assessment of Autonomous Options for the DSCS III Satellite
 System, 1981

 Prepared for the U.S. Air Force by JPL personnel (Donna L. S. Pivirotto
 and Michael Marcucci?),
 "Volume III:
 Options for Increasing the Autonomy of the DSCS III Satellite" (PDF),
 p. 179, Aug. 6, 1981.

In a more visual form, here are the 10-ms time slots and the 60- and 240-ms
intervals:

 .-- 10 ms
 v
 |
 | <- 60 ms -> | | | |
 | <- 240 ms -> |

Difficult-to-update, hand-drawn flowcharts are a thankfully retired relic
of the 1970s software industry and I provide here a pseudocode version of
the scheduling algorithm on the AACS. It is not apparent from the
Autonomous study's flowchart, but I do make an assumption
that the 60-ms routines, for example, are not all run in a single 10-ms
time slot every 60 ms. Instead, the per-slot load is lessened by
distributing them over the six 10-ms time slots in the interval. So,
given 60-ms routines ABC and DEF, then
ABC might be run in the 10-ms slots 2, 8, 14, 20, 26, ... and
DEF might be run in slots 5, 11, 17, 23, 29, etc.

 Offset60 = 0
 Offset240 = 0
 EVERY 10 ms DO {
 Run all of the 10-ms routines.
 Run any 60-ms routines scheduled for time slot Offset60.
 Increment Offset60. If 6 then reset Offset60 to 0.
 Run any 240-ms routines scheduled for time slot Offset240.
 Increment Offset240. If 24 then reset Offset240 to 0.
 }

Within a time slot, all the scheduled routines must be sure to finish before
the start of the next time slot. The programmers must quantify beforehand
the worst-case execution times for each of the routines and ensure that the
sum does not exceed 10 ms. The programmers probably are counting instruction
cycles for the assembly statements in each routine. (I use the present tense
because this would have been done for the routines prior to the 1977 launch
and still needs to be done for routines updated/uploaded nearly 50 years
later.) If the time exceeds 10 ms and offloading some 60-ms and 240-ms
routines to other time slots is not a possibility, the programmers must
speed up the routines. This is most easily done working directly with the
assembly language. It would be awkward to do this in a higher-level language
because the quanitification still has to be done at the assembly language
level.

Both Tomayko and Autonomous also mention the FDS computer's
P periods, with Tomayko providing a little more detail. With 2.5-ms
time slots, the execution constraints were even more stringent than those
on the AACS. There is no indication of whether or not the FDS had multiple
levels of intervals like the AACS. And apparently the CCS software was also
built on a cyclic executive?

 Like the command computer, the data computer has a simple executive. Time
 is divided into twenty-four 2.5-millisecond intervals, called "P periods."
 Each 24 P periods represent one imaging system scan line. Eight hundred of
 those lines is a frame. At the beginning of each P period, the software
 automatically returns to memory location 0000, where it executes a routine
 that determines what functions to perform during that P period. Care is
 taken that the software completes all pending processes in the
 2.5-millisecond period, a job made easier by the standardization of
 execution times once the direct memory access cycle was added.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, Box 6-3, p. 185.

Unrelated to performance concerns, the use of an executive proves the truth
in Richard Rice's wry quip:

 Rice characterized the unique nature of the data computer software
 this way: "We didn't worry about top-down or structured; we just
 defined functions."

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, pp. 183-184.

The executive provided the top-level structure, so the programmers really
were just writing functions to be called when their time slot came up!

 [image: Voyager Team Relaxing]

 The Voyager team takes a break from worrying
 about bit flips and decreasing RTG power! Left to right: Lu Yang,
 Todd Barber, Sun Matsumoto, Enrique Medina, and Jefferson Hall.
 The picture is from the movie,
 It's Quieter in the
 Twilight, about 45-50 minutes in, right after the camera
 panned away from Chris Jones and Roger Ludwig on the right side of
 the table. (Source: JPL's internal newsletter,
 Universe,
 June 2023,
 PDF)

 	Shoestring Space Exploration

 	Sequences and Simulators

Simulators & Other Random Thoughts

 I'm sure you'd just love the reputation of being the guy who lost 2 deep
 space probes that had gone the furthest of any manmade object and had been
 doing just fine for decades. Through your bright idea for how Things Could
 Be Done Better.

 —Mike Pellatt,
 comment
 on The Register forum, October 31, 2015, for
 "Think
 Fortran, assembly language programming is boring and useless? Tell that
 to the NASA Voyager team" (based on John Wenz's Popular
 Mechanics article).

In the comments on an Ars Technica article,
Humanity's
Most Distant Space Probe Jeopardized by Computer Glitch"
(February 6, 2024), there was an interesting subthread about the lack of
simulators for the flight computers. (Actually just for the AACS and FDS
computers? Matsumoto mentioned the COMSIM/HSSIM simulator for command
"sequences and CCS FSW changes".) I wanted to address some of the issues
raised in this section, but then I decided to get into some of the more
general issues; hence the "& Other Random Thoughts" in the title.

In every online discussion of anything touching on the Voyager computers,
there are always a number of questions such as "Why didn't they do
this?" and "Why don't they do that?" The answer to the
first question is more than likely, "Well, you had to have been there."
The second question is ably answered by Mike Pellatt above.

Shoestring Space Exploration

The Voyager spacecraft had more than fulfilled their nominal missions after
Voyager 2 flew by Neptune, so they've been living on borrowed
time ever since. However, NASA had long been keeping a close eye on budget
concerns after being raked over the coals by Congress in 1974 for Viking
cost overruns. (See Viking project
hearings in the bibliography.)

Suzanne Dodd spoke of a bathtub effect in personnel levels between
the Saturn and Uranus flybys:

 DODD: Now, Voyager went through Jupiter and Saturn, and then it had a
 bathtub, because it had five years to get out to Uranus. So a lot of
 people left. Because Jupiter and Saturn were like 18— maybe two
 years apart, 18 months to two years apart in encounters. Then there
 was this lull, so they had to cut— a lot of people left, and/or
 they just needed to trim staffing. A bathtub in staffing, because
 there was such a long duration.

 David Zierler,
 "Suzy
 Dodd (BS '84), Engineer and Deep Space Pioneer", 2023

 Caltech Heritage Project, June 9, 2023.

(McLaughlin and Wolff also refer to the
bathtub effect and describe how JPL tried to reduce the effect between
Uranus and Neptune by spreading the expected work out more evenly in the
interval.)

The "bathtub" after Neptune would be endless and the Voyager team was very
small in the succeeding decades. For those of us interested in the software
side of things, keep in mind that programming would only have been one of
the areas of engineering expertise needed on the team. And the 10-12
full-time employee equivalency means that some, if not many, of the team
were and are working only part-time on Voyager. As knowledgeable people
retired, the remaining members by necessity assumed multiple roles.

The Voyager program was almost cut off completely in the 2000s:

 NASA officials said the possibility of cutting Voyager and several other
 long-running missions in the Earth-Sun Exploration Division arose in
 February, when the Bush administration proposed slashing the division's
 2006 budget by nearly one-third — from $75 million to $53
 million.

 —Guy Gugliotta,
 "Historic
 Voyager Mission May Lose Its Funding",
 The Washington Post, April 4, 2005.

(Voyager's share of the $75 million was $4.2 million.) Thankfully, this
didn't happen, but program leaders like Dodd (who returned to Voyager in
2010) have probably had to fight for funding every year.

Between the lack of personnel, the part-time nature of the work, and the
sword-of-Damocles-like budget cut-off hanging over the project, the time
and money resources available for writing new simulators, rewriting the
flight software in C++ or Python, etc. were scarce. And both would run
up against an insurmountable obstacle: "If it ain't broke, don't fix it!"
We've got a very tenuous connection with two spacecraft, one 15 billion
miles away and the other 12 billion, and you want to do what?! Paging
Mike Pellatt ...

 • • •

Okay, resources are scarce and have been so for decades ...
In November 2023, Voyager 1 experienced an
FDS memory anomaly. Incredibly,
the JPL ground team diagnosed the long-distance problem and, in April 2024,
began uploading software changes to successfully work around and recover
from the memory problem. In July 2024, the team held an Ask Me Anything
(AMA) session on Reddit. There were some great questions from readers and
some great replies from the JPL team about both the engineering side (e.g.,
the memory anomaly) and the science side of the Voyager project. A couple
of replies left me flabbergasted however:

 Unfortunately, we no longer have any test or simulation platforms for
 Voyager. Also, we no longer have any of the conventional software
 development tools one might expect, such as assemblers/compilers.

 Therefore, we had to manually translate all of the code changes into binary
 (object code). We created a very exhaustive checklist that we then used in
 order to manually examine all of our proposed code changes, to convince
 ourselves that the changes were sound. We then iterated over that
 checklist multiple times before uplinking the changes to the spacecraft.
 -[Dave Cummings]
 (Question
 and reply)

 ...

 We do not have a flatsat (a hardware-in-the-loop testbed). The spacecraft
 have three computers, and we have a working simulator of one of the three.
 We are developing simulators of the other two.

 When we uplinked the code fix a few months ago, we did not have a simulator
 of the computer with the failure, so we had to do our best to analyze the
 code fix by reviewing it. One of the reasons we are developing simulators
 is so that we can actually simulate such a code fix next time.
 -[Kareem Badaruddin]
 (Question
 and reply)

 —Reddit
 AskScience
 AMA Series: We're the team that fixed NASA's Voyager 1 spacecraft and
 keeps both Voyagers flying. Ask us anything!, July 16, 2024.

Cummings and Badaruddin are simply describing the computing environment
in which the memory anomaly effort took place. You have to work with
what is available; you don't get to put off recovering from the anomaly
until new tools are developed. The lack of simulators for the AACS and
FDS computers was not surprising; see my discussion of sequences and
simulators below. (Cummings and
Armen Arslanian played a significant role in the resolution of the
anomaly; see Waggoner.)

I was taken aback by several things. First: There is no FDS
assembler and they manually translated assembly code into machine code?
Was there ever an FDS assembler? If not, over the past 50 years did
no one (a) ever think to write an assembler or (b) think
it worth the effort? If there used to be an FDS assembler, that was
probably early on, the assembler probably ran on a Univac mainframe,
and it probably didn't survive the move off the mainframes
(Linick and Weld, 1992). In this case,
over the past 30 years did no one (a) ever think to port the
old assembler or write a new assembler or (b) think it worth
the effort?

Writing an assembler is not rocket science. Even a simple assembler would
at least avoid the manual translation step. In the late 1970s, I wrote
such an assembler in hand-assembled assembly language for my 6800
microcomputer with 13KB of memory. No labeled memory locations, just
numeric addresses. I would type a program in on my ham-radio brother's
surplus Baudot
teletype and the assembler would generate a machine code/assembly
listing; I'd then manually calculate and annotate the listing with
the relative branch offsets. If no one at JPL could afford the time
to write an assembler, couldn't JPL have reached out to Caltech and
asked a professor to offer an independent study project for credit
to an undergraduate to write an assembler for a computer onboard
one of the most amazing technological achievements of all time?
(I'm not familiar with Caltech other than by reputation, so maybe
this is not something the university would do.)

I understand not being willing to roll out an untested, new software tool
in operations, especially prior to and during the planetary encounters.
However, it's been 35 years since Voyager 2 flew by Neptune.
A new FDS assembler would have had years to prove itself in side-by-side
runs with manual translation. And I understand, as I argued a few
paragraphs above, that inertia is sometimes a good thing and you don't
just willy-nilly rewrite software or procedures that already work. But
one would think someone in management over the past 30 years thought to
themselves, "Hey, these spacecraft are lasting a lot longer than we
expected. Maybe we should consider upgrading the flight software
development and maintenance environment so we are better prepared
to handle the inevitable future problems of aging hardware ..."

Does the flight software team have disassemblers for generating
readable listings from raw memory readouts of the onboard computers' RAM?
These are also not rocket science. In 1985, to enhance listing memory
and single-stepping through code, I added a simple disassembler to an
8086 monitor program borrowed from another project. For Voyager's more
sophisticated purposes, you would want additional inputs of (i)
a memory map indicating instruction/data/failed memory locations and
regions and (ii) a mapping of memory locations to labels.

Second: JPL is currently developing simulators for the FDS and
AACS computers? As I write this in September 2024, both spacecraft
have been in space for 47 years. It is not known exactly how long
both spacecraft will still be operational as far as Earth is concerned.
NASA's Voyager
Frequently
Asked Questions estimates the last science instruments will be turned off
in 2025 and that the spacecraft may continue sending non-science engineering
data until 2036 while enough power remains for the transmitters. The FAQ also
says that Voyager 2 has not yet entered interstellar space, which
it did in 2018, so these estimates are a few years out of date. An
April
2024 news release from NASA reports on how additional power was made
available on Voyager 2 by disabling a voltage regulator,
which will push the shutdown of the science instruments further out.
(The same change was made on Voyager 1 according to
Waggoner.)

Regardless, the Voyager spacecraft are probably in their last few years
or decade of contact with Earth. Why wait until now to build simulators?
This is doubly odd since JPL has had a simulator software framework, HSSIM
(discussed below), for almost 30
years, already used for the CCS computer. I have only found one paper
about HSSIM, Patel, Reinholtz, and
Robison, 1996 (plus two 1997/1998 papers by Saghi, Reinholtz, and
Savory about HSSIM's scheduler). The paper promised delivery of the
CCS simulator to the Voyager project by the end of 1996;
Matsumoto (2016, p. 4) indicates that HSSIM
is in use by Voyager. I have not found any later papers about experience,
good or bad, with HSSIM. HSSIM was implemented in C++ and Tcl; 30 years
later, both of these languages are still in active use around the world,
so expertise in these languages would not have been difficult for JPL to
find, now or in the past.

About a month after the Reddit AMA session, Bruce Waggoner, Mission
Assurance Manager for Voyager and other JPL projects, gave a talk about
the FDS memory anomaly and he spoke of some of the challenges faced by
the team. (The following text is based on the video captions; any
awkwardness in the text is not apparent in Waggoner's speaking, which
flows very naturally.)

 (14:07)

 So our top priority was to figure out what the FDS was and how it worked.
 Because unfortunately the person who was the real expert had retired
 decades ago and the person who was their fill-in, their backup, had
 retired two years ago.

 ... These are some examples of some of the documentation we dug up on
 the FDS ... So they're all handwritten. The one up on the upper left
 [of the presentation slide] has got some handwriting. These are
 very dim circuit diagrams and these are handwritten timelines for how
 to change FDS processors. So this was ... We were lucky to find these.
 Some things we couldn't find. A lot of it was like this. That had been
 scanned. And [frequently] — these sources were contradictory,
 ambiguous. Why? Because we changed the way the spacecraft worked with
 every planetary encounter and entering the VIM and when things broke.
 So there was a lot of opportunity for ambiguity to arise in the documents
 over the course of 50 years.

 This is my favorite example. So this is a page out of an important FDS
 document. The change bar on the far side indicates it's a change, but
 somebody went in and made the very cryptic circle of the sentence and
 crossed it out. I have no idea to this day what it means. I have no idea.
 Maybe it was important. Maybe they crossed it out, because they thought
 crossing out was important. I'm not sure.

 So there were other cases like this. So we were even so confused in some
 cases, we weren't sure if we were sending data to the FDS —
 should it be least significant bit first or most significant bit first?
 We had that level of uncertainty. So the only thing we could do is dig
 in and research more and debate. So we had a lot of debates between our
 flight team and tiger team, trying to figure out what the best thing is
 to do. But ultimately, we had to suck it up and guess at some point.
 And we made the right guesses, which is good.

 ...

 (26:44)

 We didn't know we had the right instruction set. I showed you the
 instruction set there [in an earlier slide]. We didn't know
 that was the one used to build the software, back when there was an
 assembler. We didn't know the source code version was the same as
 what was running on board the spacecraft. We had a listing of the
 code, but it was a Microsoft Word document, optical character
 recognition scans. We didn't know if there were errors in it.
 We have no assembler. So they're just playing with bits.

 Bruce Waggoner,
 "Saving
 Voyager 1! - Bruce Waggoner at !!Con 2024" (YouTube), 2024

 !!Con 2024, August 25, 2024.

"Instruction set" usually refers to the set of instructions a CPU
is capable of executing and that hasn't changed over the years, so
I believe Waggoner might be referring to the assembly language
mnemonics/syntax or to the source code generally.

The lack of up-to-date source code is a big red flag. According to
Matsumoto (2016, p. 7), Voyager 2
has an "annual full [memory readout]" of all 3/6 computers and I assume the
same is done for Voyager 1. JPL should have had a source code
listing current as of the last FDS memory readout. If a disassembler
wasn't available before the anomaly effort, one should have been written
as part of the effort, with the memory block flags and location-label map
I mentioned earlier built iteratively as the engineers explored the code.
I realize the code is a rat's nest of peeked and poked patches over decades,
but, if the CPU can execute it, a disassembler can certainly make sense of
the code. Please tell me the anomaly team weren't hand disassembling the
new memory readout with an old Microsoft Word document up on the screen.

I'm of two minds about the poor documentation. On the one hand, I get
the impression of a skunkworks environment at JPL — highly
innovative but not so good on the follow-up production and management
of documentation, etc. In this context, I can understand, for example,
NASA's decision on the Mars Viking project
to bring in a large aerospace contractor (Martin-Marietta) to build the
Viking Lander. (The skunkwords impression is just an impression; JPL
is obviously a very large organization in its own right.) On the other
hand, it has been 50 years and it is easy to imagine documentation
bit by bit dropping between the cracks or disappearing into obscurity in a
large government warehouse à la the end of Indiana Jones's
Raiders of the Lost Ark.

Stepping down off my soapbox ... From reading about the software
challenges and accomplishments on Voyager and on other JPL projects,
it's obvious that JPL has (and had) many highly talented and motivated
software developers. So I'm honestly puzzled by this glaring lack of
tools. At this late stage, I can understand preferring to work on
shinier objects, but in decades past Voyager was the shining object.
(Okay, not that shiny after the planetary encounters, but I imagine
there was a significant amount of flight software programming during
the transition to the Voyager Interstellar Mission, enough to warrant,
for example, an FDS assembler.)

 • • •

Finally, a few words about spacecraft operations. The constraints on
flight operations range from the mundane to out-of-this-world. Examples
of the mundane are staffing levels. Adamski (p. 4)
notes that during the long, hopefully uneventful, cruise intervals
between planets, operations were limited to daytime hours since the control
center was not manned around the clock; this was a contraint taken into
consideration in the design of a sequence.

Skipping in-this-world concerns such as earthquakes (see
Kohlhase, p. 120) and going straight to
out-of-this-world constraints, everyone seems to know that the Voyager
spacecraft are very far away and that it takes about 40 hours to send a
command and receive a response back. (This is called the Round Trip
Light Time, or RTLT.) However, I sometimes wonder if people also
understand that the Voyager team is not in constant contact with the two
spacecraft. You can't just make a change to the flight software, recompile
it, and uplink it to the spacecraft.

 I use 40 hours as a nice round number for RTLT. More specific values
 in 2024 are about 45 hours for Voyager 1 and about 38 hours
 for Voyager 2. If you need even more accuracy, the real-time
 Voyager Mission
 Status page has the hours, minutes, and seconds of the one-way light
 times. As I noted in the "Introduction", the
 distance of each spacecraft goes up and down depending on whether the
 Earth in its orbit is falling behind or catching up with the spacecraft.
 As the distance changes, so does the transmission time.

Communications with the Voyager spacecraft are handled by NASA's Deep Space
Network (DSN), which consists of three tracking stations spaced about
120° of longitude apart in
Goldstone (California),
Madrid (Spain),
and Canberra (Australia). Each
station has a 70-meter dish antenna, multiple 34-meter antennas, and others.
According to Matsumoto's predictions (p. 6), by
now (2024), a 70-m antenna is required to send commands to either Voyager
spacecraft and a 70-m antenna or two 34-m antennas are required to receive
engineering and science data.

 Aside: A 70-meter dish antenna is 230 feet in diameter, ¾ of
 the length of an American football field, as you can see in this fanciful
 picture of the Goldstone 70-m antenna placed in Pasadena's Rose Bowl
 stadium! (Pasadena is also home to JPL. Source:
 The Voyager Neptune Travel Guide,
 p. 28.)

 [image: 70-m antenna in Rose Bowl!]

The Voyagers are not the only spacecraft using the DSN, so the Voyager
team must request and compete for transmitting and receiving time on
the DSN. (At DSN Now,
you can see in real-time which antennas are talking to which spacecraft.)
When scheduling time, the team must take into account the 40-hour round
trip light time. Depending on a variety of factors, it is possible that
they might have to settle for time slots more than 40 hours apart, in which
case the team must ensure they can still verify the results of an operation.
Matsumoto gives an example:

 Command Loss (CMDLOS) timer, the timer that triggers CMDLOS FPA entry when
 it reaches to the pre-set value, is set for six weeks. It is still
 desirable to send the command to reset the timer every week but it is a
 best effort approach based on the DSN resources, usually without downlink
 coverage for command receipt verification. (The receipt of a command is
 verified indirectly by the CCS hourly status data when the telemetry is
 available.)

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 5, 2016 SpaceOps Conference, Daejeon, Korea.

After passing Saturn, Voyager 1 angled north of the ecliptic
(planetary) plane as it headed out into space. After passing Neptune,
Voyager 2 angled south. Consequently, communications
with Voyager 2 are only possible via the Canberra DSN station
in Australia. This became a problem in 2020 when Canberra's 70-m dish was
taken offline for 11 months for upgrades. Voyager 2 continued
transmitting data to the smaller dish antennas, but commands could not be
sent to the spacecraft. Contact was successfully reestablished in early
2021 when the 70-m dish came back online. (The prior preparation and the
actual downtime are featured in the 2022 film,
It's Quieter in the
Twilight, about the Voyager team.)

The DSN stations send commands to the Voyagers at a radio frequence of about
2.1 gigahertz. Because of the Earth's rotation (as well as the revolution
of the Earth around the Sun and other factors), a dish antenna as a whole
moves around in space. As a result, the relative motions of the antenna
and the spacecraft (which is also moving) cause a continuously varying
Doppler shift
in the radio signal's frequency as seen by the spacecraft.
(Kobele, p. 13, says that the Doppler shift can be
up to 3 kilohertz during a DSN pass.) The Voyager's receivers were designed
with this in mind and use a phase-lock loop (PLL) circuit to detect,
lock onto, and maintain the lock on a varying frequency signal within a
100-kilohertz range.

In 1978, less than a year after launch, ground control forgot to reset
Voyager 2's Command Loss timer and the aforementioned CMDLOS
function was tested for real when the timer expired. The CCS computer thought
the primary receiver was no longer working, so it switched to the backup
receiver. Unfortunately, the backup receiver's PLL circuit had failed
partially prior to this switchover and the receiver could not lock onto the
command signal. After 12 hours, the CMDLOS function switched back to the
primary receiver and contact was reestablished. "Phew!", as Wordle likes
to say. A half-hour later, the primary receiver failed completely.
Back again, a week later, to the backup receiver that couldn't
receive. (The CMDLOS timeout value was 1 week for the primary receiver
and 12 hours for the backup receiver.)

(Note that human error triggered these two problems, it didn't
cause them. The partial failure of the backup receiver's PLL circuit had
already happened and the complete failure of the primary receiver was just
waiting to happen. The project was actually fortunate that this occurred
early on and not later, for example, in the middle of flying by Jupiter.)

I don't know how they did it, but somehow the engineers figured out that
the backup's PLL circuit was limited to a single, nominal frequency with
a tolerance of only 100 Hz — that's 100 cycles-per-second in a
2.1 billion cycles-per-second radio frequency. Wow! Since
Voyager 2's receiver could no longer compensate for the Doppler
shift (up to 3 kHz during a pass), the DSN transmitter had to compensate by
sending a varying frequency signal that canceled out the pre-calculated,
expected Doppler shifts, thus delivering a constant-frequency signal to
the spacecraft.

 Note: The 100 kHz and 100 Hz figures are from
 Ludwig and Taylor, pp. 39-40;
 other sources have slightly different values.

Would that things were so simple! The frequency at which the backup receiver
is listening for commands is called the best-lock frequency (BLF).
The BLF is extremely sensitive to the temperature of the receiver and small
changes in temperature cause shifts in BLF exceeding the 100-Hz range. Many
activities on the spacecraft cause these temperature changes. To cope with
this added difficulty, the ground system must (1) limit uplinks to
no-activity periods when the receiver's temperature is stable and (2)
regularly recalibrate the BLF. The former is accomplished by following a
period of activity with an uplink-free, 24- to 72-hour command
moratorium that gives the temperature time to stabilize. The latter
is done with a scatter-shot approach, sending something (probably a test
command of some kind) at multiple frequencies and seeing which one actually
gets through. (McLaughlin and Wolff, p. 5,
describe using the scatter-shot approach to uplink emergency or time-sensitive
commands during active periods: send the same command at multiple
frequencies in hopes that one will get through. This technique may have been
used in planetary fly-bys to upload onboard sequence updates.)

Amazingly, all this was made to work and Voyager 2 successfully
flew by Jupiter, Saturn, Uranus, and Neptune and returned valuable images
and science data under these operational constraints. And continues to do so.
(The 2020 MAG-roll-gone-awry in It's
Quieter in the Twilight was probably followed by a command
moratorium.)

 Addendum: Various sources attribute the crippling of the backup receiver
 to the failure of a tracking-loop capacitor in the PLL.
 Kobele, 1989, p. 14, was more specific: "a resistive
 short in the tracking loop capacitor due to particle migration through the
 dielectric material". This necessitated a periodic maintenance operation
 to prevent complete failure: "It has been demonstrated that particles
 which have not yet completed their migration can be destroyed when the
 capacitor charge is maximized by periodically pulling the uplink signal
 to the extremes of the loop bandwidth." (I have not seen this mentioned
 elsewhere.)

Sequences and Simulators

Regarding simulators, you'll find comments such as, "Give me the CPU details
and I'll whip up a simulator over the weekend." These comments and the earlier
questions are not bad and I admit to often having similar thoughts myself.
However, as software developers, we of all people should have —
but don't have — an instinctual reaction that nothing is
ever as simple as it first seems.

In this case, simulating the CPU may be the least complicated part of a
flight computer simulator, itself part of a larger system. It turns out
that, much to my amazement, the engineers back in the 1970s —
without JavaScript and Rust, without gigabytes of RAM, and without
55-MB web pages —
somehow managed to write sophisticated and complex programs! (The link is
to a page about JavaScript bloat, not to an actual 55-MB web page.)

The following discussion is largely based on the papers by
McEvoy (1975) and Adamski (1987)
about the Viking and Voyager simulators, respectively. The descriptions here
are my understanding of the systems, which may likely be imperfect.
The intended takeaway is that the systems were complex and I think that
will be made clear in spite of any errors.

 Linick and Weld's 1992 paper examines the
 streamlining of the prior sequencing process, as described in Adamski,
 for the Voyager Interstellar Mission (VIM), an effort that successfully
 met two goals, among others, of moving off the Univac mainframes and
 operating with greatly reduced personnel in the long term. The paper
 provides a somewhat managerial evaluation of the changes and doesn't
 provide the new hardware and software details I would have liked.
 NASA's 1997 30-Year Plan describes the
 VIM sequencing strategy — the long-term baseline sequence
 and the shorter-term overlay and mini-sequences — and
 includes functional details of the baseline sequence and the Backup
 Mission Load (activated when a spacecraft is unable to receive commands).

Note something that I completely missed in my initial readings. The
Viking Orbiter had only one computer (and its backup), the CCS.
Its Attitude Control Subsystem (ACS) and its Flight Data Subsystem (FDS)
did not have their own computers. The Viking FDS did have a
1K-by-8-bit plated-wire memory:

 The FDS memories were required to perform a number of essential tasks
 and were additionally used to accomplish a variety of FDS housekeeping
 functions, including reading engineering identifiers for the flexible
 formats; buffering MAWDS, VIS, and IRTMS (A/PW) science data; storing
 and updating VO time; storing PN sequences for the VIS and science
 formats; executing memory-alteration commands from CCS; performing
 most of the science format multiplexing; and counting TV pictures
 taken and controlling related FDS logic.

 —Neil A. Holmberg, Robert P. Faust, and H. Milton Holt,
 Viking '75
 Spacecraft Design and Test Summary, Volume II: Orbiter Design
 (NASA Reference Publication 1027), p. 61, November 1980.

Because of signal transmission delays, the Viking and Voyager spacecraft were
designed to function autonomously, a form of operation that depends heavily on
stored command sequences as opposed to single, separate, "real-time" commands.
Consequently, simulation is especially geared towards the testing of command
sequences.

In the introduction, I defined a command sequence as a sequence of commands,
but they are much more than that. A sequence is composed of blocks,
each of which consists of:

	
 Events - are actions (?) that may or may not be associated with
 spacecraft commands. In McEvoy's sample Viking Orbiter block
 (Figure 9, p. 414), events with CCS spacecraft commands are actions
 targeted to the external subsystems such as the ACS and FDS. In one
 entry, the CCS instructs the ACS: "Inertial mode; stop roll turn;
 stop yaw turn; negative turn direction". Events without CCS commands
 are actions taken internally by the CCS, as in this CCS event: "Disable
 the ACS accelerometer calibration within the CCS".

	
 Data - any data required by the block; e.g., tables.

	
 Flight software - is the non-core software needed to support the
 commands/events in the block.

In developing a sequence, engineers such as Suzanne Dodd could draw on
previously defined blocks in the block dictionary for subtasks, much
like programmers use functions from libraries. Blocks used in such a manner
are customized via block options and pull in their own required flight
software. A Viking block's flight software was stored as OSTRAN macros
(McEvoy, p. 415); OSTRAN was the Viking counterpart to Voyager's SEQTRAN.
The output of OSTRAN is assembly source code that is passed on to an
assembler and linker, ultimately resulting in the memory load (containing
sequence, data, and flight software) that will be uplinked to the spacecraft.
It appears that the flight software resident in memory consists of (i)
the core software that is always present (executive, sequence processing,
fault protection, etc.) and (ii) only the non-core software needed
to support the currently loaded sequences.

Throughout the development and simulation of sequences, there are automated
and human checks for physical and operational constraint violations. When
a violation is detected, engineers determine how serious the violation is
and, if necessary, go back to the drawing board to remedy the problem.
The engineers also need to verify that a sequence actually does what it
is supposed to do; e.g., take a picture of Neptune. Consequently, the
design-develop-test cycle for sequences is an iterative process.

A block diagram for the Voyager simulator (COMSIM) would look similar to that
of the Viking Orbiter simulator (OCOMSM) below. (I think — I
haven't been able to find detailed information about Voyager's simulator.
Incidentally, the Viking Lander simulator was called LCOMSM.) Note
that the nested CCS and FDS simulators are subsystem simulators.
I'm puzzled by the absence of an ACS simulator. The Viking Data Storage
Subsystem, DSS, handled the Digital Tape Recorder (DTR), a function taken
over by Voyager's FDS.

 [image: Viking Orbiter Simulator]

 Viking Orbiter Simulator Functional Block Diagram
 (McEvoy, Figure 11, p. 417)

The simulator outputs on the right side of the diagram are very important
and provide:

	Visibility into the internal sequence processing to the sequence
 and flight software engineers.

	A step-by-step timeline for the flight controllers to follow (after
 the fact because of the time delay!) as the sequences are actually
 executed on the spacecraft.

The step-by-step timeline is called the Sequence of Events (SOE) on
Voyager:

 In addition to the blocks of load commands, the sequence generation process
 provides other products that are used in the command and control of the
 spacecraft. A Sequence of Events (SOE) is produced that is a printed,
 time-ordered listing of the activities contained in the CCS sequence.
 Performance predictions are generated for power usage, scan platform
 pointing, and other spacecraft functions. Additional uplink commands may
 also be generated along with the main sequence. These commands are held
 for subsequent transmission at pre-identified points in the sequence in
 order to perform discrete functions or enable checkpointed events.

 Terrence P. Adamski,
 "Command and Control
 of the Voyager Spacecraft" (abstract), 1987

 p. 5, American Institute of Aeronautics and Astronautics (AIAA),
 25th AIAA Aerospace Sciences Meeting, March 24-26, 1987, Reno, Nevada.

A spacecraft is more than just its flight software and simulators must also
simulate the hardware. McEvoy suggested
APL
for both describing and simulating hardware, although he didn't come right
out and say they used APL. I wasn't aware of APL's role in the hardware
realm, but it's a real thing. (I do question the widely asserted notion
that APL was originally a hardware description language. That doesn't seem
to agree with Kenneth Iverson's contemporary writings and later recountings
of APL's history, but it is a Fortran 5-like rabbit hole that I'll leave to
someone else to explore!)

 One difficulty in modeling digital hardware is the different languages
 used in the hardware and software disciplines. Hardware description
 languages that describe hardware at the logic-gate bit-time
 register-transfer level provide a commonly understandable detailed
 definition that can bridge the gap. The APL language itself provides
 an excellent basis for describing digital hardware. Power-on-reset
 states and hardware idiosyncracies, that could affect a sequence,
 must be considered in the modeling stage. Any of these that could
 affect operation of the hardware, software, timing, or other subsystems
 should be modeled.

 Maurice B. McEvoy,
 "Viking
 Orbiter Uplink Command Generation and Validation via Simulation"
 (PDF), 1975

 p. 417, The Institute for Operations Research and the Management Sciences
 (INFORMS)
 Winter
 Simulation Conference 1975 Conference Proceedings.

Voyager's CCS subsystem simulator would also have looked similar
to Viking's:

 [image: Viking CCS Simulator]

 Viking Orbiter CCS Simulator
 (McEvoy, Figure 12, p. 418)

Each of the CCS, AACS, and FDS subsystem simulators would have had to simulate:

	the two CPUs,

	the internal elements of the subsystem (e.g., memory banks),

	interfaces with elements external to the subsystem (including
 interfaces with the other computer subsystems),

	cross-strapping (switching) between primary/redundant elements both
 internal and external,

	and the timing of everything.

The two CCS CPUs could also work independently of each other and not in a
strict primary/backup relationship. Despite my listing of the simulation
"requirements" above, there is a lot I don't know about the simulators:

	
Were CPUs simulated in software or were actual hardware spares used?

	
For CPUs simulated in software, was the simulation at the instruction-set
level or was it a simulation of the CPUs' actual electronic circuits
(e.g., using APL)?

	
And similar questions about interfaces with the various non-CPU elements:
Was an interface simulated at a logical level or as an electronic circuit?
Or was a real interface with a hardware spare used?

	
What elements could be cross-strapped? And was cross-strapping simulated?

In other words, my ideas about the simulators are largely guesswork. McEvoy
does provide a few more details about the CCS simulator, although some of my
questions are still unanswered:

 The Computer Command Subsystem (CCS) simulator (Fig. 12) accurately
 models the Block redundant CCS processors, output units, and memories at
 the instruction and register transfer level. The accuracy with which
 software programs (in the memories) are simulated is dependent primarily
 on the accuracy with which the bit-time clocks can be calibrated during
 flight and timing accuracies of the 32 priority interrupts and 24 level
 indicators. Output simulation consisting of discrete commands (relay
 closures), coded commands, and telemetry data can be routed through
 either or both output units. A hardware and software self-test must
 be satisfied before access can be obtained to an output unit.
 (p. 418)

 ...

 The large amount of time used to simulate uplink command decoding is
 due primarily to the CCS hardware and software self-test activity,
 which in turn is affected by the FDS engineering telemetry rate and
 format. (p. 419)

 Maurice B. McEvoy,
 "Viking
 Orbiter Uplink Command Generation and Validation via Simulation"
 (PDF), 1975

 The Institute for Operations Research and the Management Sciences (INFORMS)
 Winter
 Simulation Conference 1975 Conference Proceedings.

(I don't understand the purpose of the "hardware and software self-test"
in the last sentence of the first paragraph. Was this done on the actual
spacecraft? The later sentence seems to indicate "Yes". I can understand
self-tests performed repeatedly in the background or prior to a set of
operations, but I am perhaps overestimating the frequency of the self-tests.)

So, spacecraft simulators are complex systems. What did the Voyager simulator
look like?

 The validation end of the software development process was handled by the
 Capability Demonstration Laboratory (CDL). Completed after the initial
 software was produced, it was a collection of either breadboard or flight
 surplus computer and science hardware, and its interfaces interconnected in
 the same way as those on the actual spacecraft. Its function is identical
 to that of the Shuttle Avionics Integration Laboratory (SAIL), in which
 both software and hardware changes could be tested to see if they
 functioned successfully.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, p. 175.

And the CDL lapsed into disrepair:

 In addition, the [Voyager flight team] also has to work around a lack
 of a hardware test bed, the limited memory of on-board computers, and
 antiquated programming languages.

 The Capability Demonstration Lab (CDL), the testbed used during the prime
 mission, could not be maintained and had to be abandoned at the start of
 VIM. The failures of the testbed were too often, even in pre-VIM, due to
 aging hardware and disappearing repair expertise. The project had to move
 to a new location in early VIM and the CDL did not survive the move. There
 are no simulators for the AACS or FDS and only the CCS has a simulator,
 i.e., HSSIM. As a result, any FSW changes other than something very simple
 have to be done in the CCS.

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 6, 2016 SpaceOps Conference, Daejeon, Korea.

The last sentence above suggests to me that a non-trivial change to the AACS
or FDS flight software is considered risky and that, if possible, it is
better to leave the existing AACS/FDS software as-is and have the CCS take
over responsibility for the changed functionality. That's my impression
at least; given the lack of rigorous simulation capabilities, I think it's
a sensible decision.

Oddly, searching on Google for JPL's "Capability Demonstration Lab", mentioned
by both Tomayko and Matsumoto, only brings up a couple of references to
Matsumoto's paper; on Bing, you get a single result ... for JPL's Cyber
Defense Laboratory! By a strange coincidence, a couple of hours after
reading the previous sentence, I was reading McLauglin's & Wolff's paper
about the preparations for Voyager 2's Uranus fly-by and I came
across the most detailed description of the CDL yet. Which is not saying much,
but the passage below does give a good picture of a flight software engineer's
life!

The physical actions and movements in the Digital Tape Recorder (DTR)
produce "equal and opposite reactions" in the spacecraft and thus affect
the spacecraft's attitude. After the Saturn encounter, a routine, DSSCAN,
was added to simultaneously fire attitude control thrusters when performing
high-rate tape operations, thereby greatly reducing the time it takes for
the spacecraft attitude's rate-of-change to slow enough to begin the next
science operation. (A savings of over 3 minutes in the case of the
end-of-track turnaround, valuable time during the all too brief hours of
closest approach.) That's my understanding; it's not clear which computer
DSSCAN was added to, AACS or CCS.

Note how Voyager 1, its mission already completed, was used
as a test bed for the Voyager 2 FSW modifications. Note also
that the AACS and CCS programs were not reassembled, but instead
patched, a practice that had been ongoing since launch. What a nightmare
the onboard software must have become! I don't know how long the practice
continued, but it makes the VIM team's reluctance to modify the AACS software,
per Matsumoto, even more understandable.

 The DTR is mounted on the spacecraft such that its angular momentum is
 introduced into the yaw and pitch axes of the spacecraft with almost none
 going into the roll axis. DSSCAN was first programmed to introduce
 cancelling momentum in the yaw axis only. The modification to the AACS and
 CCS software took place in an environment of a scarcity of available memory
 so that, from a programming point of view, it had to be carefully fit in.
 The "patch" was carefully tested in the Voyager Capability Demonstration
 Laboratory (CDL) before loading onboard Voyager 1. (The AACS and CCS
 programs were modified without being reassembled as is the case with all
 AACS and CCS changes since launch.) The CDL is a digital/analog simulation
 of many of the spacecraft capabilities. Modifications or tests of any
 degree of complexity are done first, whenever possible, on Voyager 1 before
 implementation on Voyager 2, a reflection of the fact that Voyager 2 still
 has two planetary encounters scheduled while Voyager 1 has none.

 Once onboard the spacecraft, DSSCAN was tested during periods of DTR
 operation to determine empirically how many thruster pulses should be used
 to counteract a DTR event. For example, tests on Voyager 1 in March of
 1984 showed that five thruster pulses were the optimum number. These
 pulses each have an electronic-activation length of 10 ms, and a single
 pulse will change the drift rate about the spacecraft yaw axis by
 approximately 11 µr/s. See Fig. 12.

 Now that the effect of DSSCAN on yaw-axis momentum introduced by DTR events
 is known, the subroutine is being modified to incorporate momentum (near)
 cancellation in the pitch axis. Although the modification is, in
 principle, straightforward in view of the yaw axis experience, in practice
 this is not the case. The relative complexity arises from the tight
 programming that must be done because of the shortage of AACS and CCS words
 and existing programs that have already been heavily modified; with
 resultant complexity of code. Add to this the potentially serious
 consequences that could arise from any mistake in modifying the control law
 of the spacecraft, and one appreciates the fact that even seemingly simple
 changes can require extensive time for testing and experienced personnel
 for safe implementation. (pp. 11-12)

 ...

 During implementation of the sequence, certain critical or complex
 subsequences may be checked for validity by running them through a
 sophisticated analog/digital simulation of extensive portions of the
 spacecraft: the Voyager Capability Demonstration Laboratory (CDL).
 The CDL contains, for example, duplicate versions of CCS, AACS, FDS,
 scan platform actuators, and the DTR. (p. 17)

 W.I. McLaughlin and D.M. Wolff,
 "Voyager Flight
 Engineering: Preparing for Uranus" (abstract), 1985

 pp. 11-12, American Institute of Aeronautics and Astronautics (AIAA),
 23rd Aerospace Sciences Meeting, January 1985, Reno, NV.

 Aside: I'm not sure how to square the "patching-only" of the CCS code
 (or if it even needs to be squared) with McEvoy's description of assembly
 source code being pulled from the sequencing block dictionary, code that
 would be assembled and placed in a sequence's uplink memory load.

The High Speed Simulator (HSSIM) is a flexible spacecraft simulator
developed at JPL in the 1990s and written in C++. Spacecraft components are
represented by C++ objects and a component/object may have one or more
interfaces. Interfaces are strongly typed and connections between components
can only be made over compatible interfaces. For example, you can connect a
CPU's data bus to a memory bank's data bus, but not to the memory bank's
address bus. The link, at the C++ level, between two interfaces is called
a splice. Each component has its own
Tcl interpreter that allows
scriptable behavior in addition to other functions:

 C++ was chosen as the implementation language for simulation components,
 because of its run time efficiency and its support for object-oriented
 programming. A processor component, for example, may emulate a hardware
 instruction set and the code which implements this must be sufficiently
 fast to meet the performance objectives of the simulator.

 Most components contain a[n] embedded interpreter which
 recognizes the language Tcl. Tcl is a freely available embeddable
 language and concrete interpreter implementation developed at the
 University of California, Berkeley. Tcl was augmented to make it
 multi-thread ("MT") safe and to add additional features, in particular,
 a C++ class wrapper and a fast "remote procedure call" that can execute
 commands remotely on named interpreters (many of the components within
 HSS contain named interpreters, which are used to manipulate the
 component) and return the result of the execution to the local interpreter.
 The HSS Tcl subsystem is used for many things, including model state
 examination and alteration, establishment of model interconnections, and
 model state monitoring and display (using Tk, a toolkit based on Tcl
 which can quickly create Graphical User Interfaces). As a general rule,
 Tcl is used unless other performance or robustness concerns dictate the
 use of splices.

 —K. Patel, W. Reinholtz, and W. Robison,
 "High
 Speed Simulator — A Simulator for All Seasons"
 (PDF),
 p. 751, SpaceOps 1996, Proceedings of the Fourth International
 Symposium, September 16-20, 1996, Munich, Germany.

HSSIM supports multiple implementations of a given spacecraft component/object,
with the choice of which implementation to use being made at the time of a
simulator run. Depending on their need, an engineer can choose between,
for example, a slower, bit-level (logic-gate) simulation of a component
or a faster, functional-level simulation. HSSIM was successfully used
in various roles for the Jupiter orbiter,
Galileo,
beginning some time after the spacecraft's high-gain antenna failed to fully
deploy in 1991. According to the paper, versions for the Saturn orbiter,
Cassini
(to be launched in 1997), and Voyager were to be delivered "later this year"
(1996?).

As a software developer, I admire and respect the design of HSSIM. And my
knowledge of the capabilities and implementation of the earlier COMSIM and
CDL is almost entirely inferred from McEvoy's description of the Viking
simulator; i.e., I could be way off-base. Keeping this in mind, I suspect
that the HSSIM delivered to and used on Voyager is a bare-bones CCS simulator.
Building a software-based simulator for a specific spacecraft is a
labor-intensive task, with or without HSSIM. You need people knowledgeable
about the spacecraft and buy-in from a management willing to invest in the
effort. The nearly 20-year-old Voyager spacecraft had already fulfilled
their primary missions and the program lacked some key requirements for
building a simulator:

	Many people with intimate knowledge of the spacecraft hardware and
 flight software had moved on or retired.

	JPL as an organization was probably losing interest in the program as
 newer — much newer — programs vied for attention.

	Machine-readable documentation (e.g., hardware specifications) was
 probably non-existent.

	HSSIM developers themselves were probably none too eager to work
 on technology from the ancient past!

Knowing C++ and Tcl would have been helpful. The HSSIM paper did mention
automatic code generation using an expert system and, under "Future
Direction", proposed other means of automatically building parts of the
simulator. Those would lessen the need for C++/Tcl software expertise,
but there's still the laborious task of assembling and manually entering
all the information needed as inputs to the expert system and to the other
proposed mechanisms.

So, no AACS or FDS simulators. Only a bare-bones CCS simulator.
(Again, that is my impression from my readings and I hope I am wrong.)

AACS, HYPACE, and HYBIC

NOTE that the AACS computer is not the at-the-time
experimental HYPACE (Hybrid Programmable Attitude Control Electronics)
computer. For budgetary reasons, Voyager instead used a CCS computer
running at a higher clock rate and with an added index register found
useful on HYPACE. Dr. Tomayko wrote:

 Documentation for the system still refers to the attitude control
 computer as HYPACE, even though its heart was the [CCS] command computer.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, p. 178.

(General Electric made both the CCS and HYPACE computers.) With respect
to HYPACE, Dr. Tomayko wrote:

 Index registering meant that the same block of code could be used for all
 three axes, reducing memory requirements.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, p. 177.

This sounds like the typical use of an index register: add the value in the
index register to addresses when accessing memory. By changing the value
in the index register, a program can switch between each axis's set of
variables prior to calling a common subroutine.

I suspected a simple way of implementing an index register so as to avoid
changing the CPU's instruction set would have been to place a
memory-addressable chip or electronic circuit between the CPU and memory
to hold the index value. The following description of the AACS computer
found elsewhere gives a name to a circuit that may or may not be such an
implementation:

 The Attitude and Articulation Control Subsystem used an augmented version
 of the CCS computer that inserted a unit (the Hybrid Buffer Interface
 Circuit (HYBIC)) between the CPU and RAM, which intercepted instructions to
 add indexed addressing capability (at the expense of other instructions),
 and accelerated instructions that used idle cycles.

 —John Culver,
 "The CPUs of
 Spacecraft Computers in Space", The CPU Shack.

Unlike other (incorrect) descriptions, Culver's doesn't conflate the AACS
with HYPACE, so I think he knows what he's talking about. His description
does seem to indicate that changes were made to the CCS CPU and
its instruction set for the AACS. Strangely, Tomayko's report doesn't
mention HYBIC at all.

In her 2016 paper, Matsumoto describes a problem in a decidedly more complex
HYBIC:

 The Hybrid Buffer Interface Circuits (HYBIC) on V1 was switched to the
 backup unit in 2002 due to a failing component inside the HYBIC Analog
 to Digital (A/D) converter. The star tracker on the original HYBIC was
 performing well at the time of the switch but each HYBIC has a unit
 (A/D converter, sun sensor, and star tracker) dedicated to the HYBIC.
 The star tracker on the current HYBIC is degrading rather rapidly and
 closely monitored; it is quite likely that a HYBIC switch back to the
 original is needed before the end of the mission

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 3, 2016 SpaceOps Conference, Daejeon, Korea.

Okay, HYBIC is a lot more than just an index register or registers. (See
the picture of the
HYBIC
Logic Subassembly at the Smithsonian.) A 2006 JPL presentation about the
Voyager 2 HYBIC problems included a functional block diagram of
the AACS:

 [image: AACS Block Diagram]

The diagram doesn't show an interface between the HYBIC and its associated
memory bank. However, a 1981 U.S. Air Force study,
Assessment of Autonomous Options for the DSCS III
Satellite System, has a similar diagram (Figure B-3, p. 178) that
adds a 6th arrow between the HYBIC and RAM. And, interestingly, has a dashed
box labeled "HYPACE" around the upper portion of the diagram!

The role of HYBIC in the AACS is up in the air for me. Online information
about HYBIC is extremely scarce and what little I could find is basically
a rehash in one form or another of the information above.

 	CCS Computer

 	AACS Computer

 	FDS Computer

Flight Computer Electronics

 I repeat that I am not an electronics engineer. Back in the 1970s, I did
 pore over Don Lancaster's TTL Cookbook and Roger Melen's and
 Harry Garland's Understanding CMOS Integrated Circuits.
 I built maybe a handful of small circuits on a white ceramic breadboard
 from RadioShack, although the only one I remember was a CMOS code-practice
 radio transmitter that could broadcast at most 10-15 feet to a pocket AM
 radio! I understood the digital electronics at an abstract logic level,
 but not at the level of knowing I need a resistor here and a capacitor
 there. I did build a 6800-based
 microcomputer held together by duct tape and, initially, rubber bands.
 Slightly more recently, in 1984-1985, I wrote the
 core firmware for 80286 single-board
 computers mounted in racks that tested MILSTAR satellite components.

CCS Computer

The CCS computer was built using transistor-transistor logic
(TTL)
integrated circuits:

 To control development costs, the CCS is nearly identical to the embedded
 computer developed for the Viking spacecraft that went to Mars, with the
 addition of interface ports for the FDS and AACS. The CCS is constructed
 entirely of TTL logic chips, because that's how things were done in the
 early 1970s; [i]t was the heyday of the 7400 series TTL family, which was
 dominated by Texas Instruments. The paired CCS computers use
 dual-redundant plated-wire read/write memory, which works like
 magnetic-core memory but uses wire plated with a magnetic coating instead
 of ferrite beads.

 —Leibson, Steven,
 "Voyagers
 1 and 2 Take Embedded Computers into Interstellar Space",
 EE Journal, July 25, 2022.

The 7400
series of chips (labeled SN74xx) ranged from discrete logic gates to
larger-scale devices such as a 4-bit arithmetic logic unit. Strictly
speaking, Leibson is not definitively stating that the CCS was built from
7400-series chips, just that they were widely used at the time. If this
family of chips was used for the CCS computers, the actual chips used
would probably have been the military-grade versions (SN54xx) with
an extended range of operating temperatures or the radiation-hardened
versions (RSN54xx)
(Wikipedia).
Since a number of the 7400 chips like the ALU operated on 4-bit values,
I wonder why the original Viking Orbiter's CCS word size was 18 bits rather
than 16 or 20 bits. (The Viking Lander computer's word size was 24 bits;
see Tomayko, Chapter 5, Section 6.)

All that being said, I overlooked an important clue about the TTL chips in
Tomayko's account (p. 182) of the development of the
FDS computer:

 [This web page] mentions the use of 54 series TTL chips in the CCS
 and AACS computers. I suspect they used 54L (low power) and 54LS (low
 power Schottky) TTL series chips. 54L uses about 10 times less power than
 standard 54 series chips, but is about four times slower. 54LS uses about
 5 times less power than 54 series, but is about 50% faster.

 "Uniquely, Wooddell began working with a programmer in 1973, as soon as
 the instructions were ready. Richard J. Rice of JPL began by developing
 software for a breadboard version of the data computer. The breadboard
 originally used the ubiquitous 4K memory of plated wire with 18-bit words
 and 150 of the same low-power TTL ICs used in other JPL
 machines. Instruction execution times for this version ranged from 12 to
 24 microseconds. Rice's prototype flight program, developed on the basis
 of what was then known about Voyager instrumentation and previous
 experience, showed that the processor speed should be doubled."

 —Steven Pietrobon,
 "NASA
 - Voyager 1 and 2 updates", NASA Spaceflight Forum (unaffiliated with
 NASA), August 29, 2024.

AACS Computer

As mentioned previously, the AACS computer is a
modified CCS computer. It has a faster CPU that achieves its speed at
the cost of increased power consumption, a precious commodity on a
spacecraft. My impression from the following (thanks to
Remes)
and other sources is that the two AACS computers are rarely powered up
at the same time:

 ... The AACS employs the same type of processors (and memories) as does
 the CCS but operating three times as fast.

 ... Emphasis on minimizing spacecraft power consumption resulted in a
 design which permitted powering only one processor (and memory) for
 attitude control at a time. The backup memory may be energized for
 read/write operation while the other processor provides the control
 functions.

 Christopher P. Jones and Thomas H. Risa,
 "The Voyager
 Spacecraft System Design" (abstract), 1981

 p. 8, American Institute of Aeronautics and Astronautics (AIAA),
 16th Annual Meeting and Technical Display
 on Frontiers of Achievement, May 12-14, 1981, Long Beach, California.

I have not been able to find out exactly which TTL chips or family of chips
were used to build the CCS and AACS computers. If the CCS
computer was built with the standard 74xx chips, the AACS computer may have
instead used the faster 74Hxx high-speed TTL chips
(radiation-hardened RSN54Hxx) or the even faster 74Sxx Schottky TTL
chips (RSN54Sxx) available at the time. (As Steven Pietrobon notes
immediately above, Voyager probably used the low-power versions of the
chips.) This is just speculation on my part and I'm sure there were other
factors that contributed to the increased speed of the AACS computer.

FDS Computer

The FDS computers were built using complementary
metal-oxide-semiconductor
(CMOS) integrated circuits:

 ... While the CCS and AACS computers are based on older NASA computer
 designs that use plated-wire memory, the FDS computers needed much faster
 memory to achieve Voyager's performance goals, so the FDS memory systems
 were built with CMOS SRAMs. I asked JPL for a description or part number
 of the failed SRAM and got a reply from Jeff Mellstrom, the Chief Engineer
 for JPL's Astronomy and Physics Directorate. The failed device was one RCA
 256x1-bit CD4061A CMOS SRAM. That one bad chip knocked out 256 words of
 FDS memory.

 ... A report appearing in RCA's "High Reliability Integrated Circuits"
 data book in 1982 stated that Voyagers 1 and 2 contained 10,346 RCA CMOS
 ICs between the two spacecraft. That works out to 5173 CMOS chips per
 spacecraft. Each of the dual-redundant FDS computers in each spacecraft
 needed 512 CD4016A SRAMs to create the 8Kword memory, which is 1024 CMOS
 SRAM chips per spacecraft. According to the reliability report, just two
 of the RCA CMOS ICs out of the 10,346 total number in both Voyager
 spacecraft had failed after the first 52 months in space. We know from JPL
 that one of the Voyager 1 spacecraft's FDS memories failed in 1981, so at
 least one of the two reported CMOS chip failures was associated with that
 memory loss.

 —Leibson, Steven,
 "JPL
 Software Update Rescues Failing Voyager 1 Spacecraft",
 EE Journal, May 27, 2024.

Like the 7400 series of TTL chips, the
4000
series of CMOS ICs includes various chips that perform 4-bit operations.
For instance, the CD4008A 4-bit adder has a carry input so that four of these
can be linked together to make a 16-bit adder. I don't know if Jack Wooddell
used these particular chips or in this fashion. Tomayko's description
suggests Wooddell used a more complicated mechanism:

 Despite its I/O rate, the arithmetic rate is quite slow, mostly due to
 byte-serial operation. This meant 4-bit bytes are operated on in sequence.
 Since the word size of the machine is 16 bits, it takes six cycles to do an
 add, including housekeeping cycles. If all the arithmetic, logic and
 shifting were not done in the general registers, the machine would have
 been even slower.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, Box 6-2, p. 184.

Thanks to
Remes,
we have some information about the radiation hardening of the CMOS chips:

 Large quantities of CMOS devices comprising 28 different logic functions
 were used in the spacecraft. Devices fabricated by the standard commercial
 process could not withstand a fluence of 5 x 1012
 e/cm2 under normal bias conditions, due to a
 shift of the n-channel gate turn-on voltage toward 0 V, accompanied by an
 increase in the supply current. By reducing the gate oxide annealing
 temperature from 1100 to 950° C, it was found possible to fabricate
 devices that were still functional after irradiation to 5 x
 1012 e/cm2, though with
 somewhat degraded device characteristics (References 6-1 and 6-2).
 However, even these devices showed significant degradation at a dose of 150
 krad(Si) ...

 A CMOS static random-access memory, very susceptible to ionizing
 radiation, was also used on the spacecraft,. A hardening program for
 this component was considered to be too expensive. It was, therefore,
 decided to apply massive shielding, so that the impinging total dose
 would not exceed 10 krad(Si).

 A.G. Stanley, K.E. Martin, and W.E. Price,
 "Voyager
 Electronic Parts Radiation Program (Volume I)" (abstract, 9MB
 PDF),
 pp. 6-1 and 6-2, 1977.

It's not clear to me, but is it safe to assume the "massive shielding" was
applied to the entire FDS computer and not just the memory board? And in
conjunction with the fabrication changes? An omitted paragraph about the
"degraded device characteristics" showed CMOS chip propagation delays
increasing by factors of 50% to 100% as radiation levels rose.

Leibson's second paragraph above about the reliability of CMOS chips is a
slightly incorrect interpretation of an odd table in an RCA CMOS databook.
(The PDF is a selection of pages from a larger work, whose title is not
apparent. The 1983 RCA CMOS Integrated Circuits Databook
has a chapter on high-reliability ICs, but it is much briefer than the
linked-to PDF and it does not have the information about actual military
and aerospace projects using these chips.)
Here's the odd table:

 [image: RCA CMOS Operating Life Table]

 "Field-Usage Operating-Life Data",
 RCA
 High-Reliability IC Products (PDF), p. 51, 1982?

52 months is not the elapsed time in space, but is instead the sum of the
"orbit times" of Voyager 1 (27 months) and Voyager 2
(25 months). One would think that time in orbit was the time in space,
but the 27-month and 25-month figures then don't make any sense.
Voyager 2 was launched a little over 2 weeks before
Voyager 1, not 2 months after! And, as of October 1980
(footnote 6 in the table), the time in space for each spacecraft was
roughly 37 months (September 1977 through September 1980), for a sum
total of 74 months. Given the October 1980 date, the two chip failures
predated the 1981 memory failure.

One would also think that device-hours was simply the orbit time in
hours multiplied by the number of devices, but the figures in the table are
that value divided by the number of spacecraft (two in Voyager's case):

 orbit-time * 30 days/month * 24 hours/day * #devices
#spacecraft

I'm not sure what purpose is served by this average device-hours per
spacecraft.

Leibson's article about the CMOS chips does bring up something I hadn't
previously given any thought to — how big are the Voyager
computers? If the numbers are correct, 5,173 CMOS chips per spacecraft
is a lot, or seems so. And that works out to about 2,500 chips per FDS
computer? A fifth of those are the 512 static RAM chips making up the
computer's 8K words of memory. Throw in the address decoding circuitry,
interfaces between the FDS computer and both CCS computers, the interface
to the other FDS CPU's RAM, interfaces to external hardware such as the
Digital Tape Recorder and the science instruments, the instruction decoding
and execution circuitry, the arithmetic logic unit, the 128 "special
registers ... kept in memory" (Tomayko, Box 6-2),
the direct memory access circuitry, etc., etc. The numbers quickly add up.

A picture widely shown on the web as "the FDS computer" is this grainy,
black-and-white image from Tomayko's report (cropped by me):

 [image: FDS Hardware]

 "The Flight Data System hardware in its package. (JPL photo 360-751AC)"

 Board label: MJS77 FDS 2006A3A1 S/N 003

 (Source: Tomayko, Chapter 6, Section 2, Figure 6-2,
 p. 181)

(The actual hard-copy report probably had a better quality, possibly color
photograph.) If those rectangles in the image are CMOS chips, there's room
for 27 columns times 12 rows of chips, plus 2 extra chips at the top and
minus 1 chip at the bottom center — or 325 chips in total on a
circuit board. (Heacock, p. 222, has a picture of
a different but similar board with a more fully populated 27x12-chip layout.)

I've only ever worked with dual in-line package (DIP) ICs, but the only way
to fit 300-some DIP chips on a 7-inch by 14-inch circuit board (see below)
is if all the chips are 8-pin ICs. The 1975 and 1983 RCA CMOS
Integrated Circuits Databooks list only one chip with 8 pins, the
dual 2-input NAND CD40107B, and it would make no sense to build a board
filled entirely with 650 discrete NAND gates. However, a 16-lead, ceramic
flat pack (CFP) chip is about the same width and about half the length of a
16-pin DIP chip, so a 7x14-inch board will support a 27x12 layout of
16-lead CFPs. Fitting a 16-lead CFP into approximately the same space as
an 8-pin DIP is accomplished by doubling up the pin holes underneath the
chip and using a machine or jig to bend and cut the leads into the cramped
space. Looking closely at the grainy FDS board image, I think Voyager uses
a pin hole configuration similar to the following from a radar processor
board from the late 1970s:

	
 [image: 14-lead Ceramic Flat Pack]

	
 [image: 16-lead Flat Pack Mount]

	
 14-lead Ceramic Flat Package (Source: 1983 RCA CMOS Integrated
 Circuits Databook, p. 14)

	
 Mounting holes for two 16-lead CFPs on a "Westinghouse radar processor
 board (70's)" (Source: Don Straney,
 "Reverse-engineering
 misc. avionics (ongoing)", June 5, 2024)

By my calculation, the number of circuit boards for a single FDS computer
would be 8 boards (if all 2,500 chips were at most 16-lead). Someone with
experience in this type of technology probably knows of techniques for more
compactly packaging the electronics, not only for the FDS computers but for
the CCS and AACS computers as well. I learned of one such technique from a
post
by Steven Pietrobon in an
online
discussion of the November 2023 FDS memory problem. The actual
semiconductor component of a chip is called the
die,
which is connected to leads/pins and encased in a CFP or DIP. By
collecting multiple dies in a single package, you reduce both the
size of a circuit and the number of external wire connections (board traces)
that would have been required between individual dies in individual CFPs or
DIPs. Voyager used this technique for the FDS memory, assembling 128 256x1
CD4016A dies into a 2K x 16-bit configuration:

 Algorex Data Corporation is supplying a thick film hybrid memory circuit to
 the Jet Propulsion Laboratory for use on the Mariner spacecraft, which will
 be launched in 1977 to rendezvous with Jupiter and Saturn. The memory will
 consist of four, 3x3 inch, four-layer hybrid circuits, each containing 2048
 16-bit words. Each hybrid contains 140 chips: 128 CMOS memory chips and 12
 driver chips. The memory chips are RCA CD4061 static RAMS with a 256 x 1
 organization. The four hybrids do the job of two 7 x 14 inch multilayer
 boards, and the cost, in the low hundred-thousand-dollar range, is
 reportedly half the conventional approach.

 —Dennis E. Berglund, Irving Goodman, William J. Patterson,
 and Julius Reiner,
 Hard
 Preprocessor Study (11MB
 PDF),
 AFAL-TR_75-157, p. 67, 1975.

These are custom assemblies of multiple dies, not single 2Kx16-bit dies.
Voyager was originally called the
Mariner
Jupiter-Saturn 1977 (MJS77) program and was renamed "Voyager" only months
before the spacecraft launches! Rather than spreading 512 CD4061A chips
across multiple circuit boards, an FDS computer's full 8K words of memory
in four 3x3-inch modules could be mounted on one circuit board with room
to spare. I highlighted the memory modules in the following picture
(note the MJS77 label):

 [image: FDS memory board]

 "Fig. 15. Flight data subsystem
 electronic equipment bay memory subchassis" (Source: Raymond
 L. Heacock, "The Voyager Spacecraft",
 p. 222, 1980)

Also see the backplane side of the
Flight
Data Subassembly Bay. I assume the connectors shown mate on the other
side with the connectors at the top of the FDS boards.

FDS Image Compression

 This is my attempt at understanding Voyager's image compression
 implementation. Those with the mathematical knowledge to
 understand compression algorithms should skip straight to
 Urban's paper.

The distances of planets are increasingly large as you move from the inner
to the outer planets and that greatly weakens the power of radio signals
transmitted between the Earth and spacecraft. The following table shows
the distances of four planets when Voyager 2 flew by them. An
astronomical unit (AU) is the average distance of the Earth from the
Sun, which is about 93 million miles. Earth has a nearly circular orbit,
so the distance between the Earth and a planet at a given time can vary as
much as 2 AU depending on whether the Earth is on the near or far side of
the Sun from the planet.

Voyager 2 Planetary Encounters

 	Planet
 	Closest Approach
 	Distance from Sun (AU)
 	Distance from Earth (AU)

 	Jupiter
 	July 9, 1979
 	5.33
 	6.21

 	Saturn
 	August 26, 1981
 	9.60
 	10.41

 	Uranus
 	January 24, 1986
 	19.12
 	19.83

 	Neptune
 	August 25, 1989
 	30.21
 	29.58

 From Chris Peat's
 Heavens Above;
 you can enter dates at the bottom of the page.

The important thing about the distances in the table above are the rough
ratios. At the dates of Voyager 2's encounters, Uranus was
over three times as far from Earth as Jupiter had been and Neptune was
almost five times as far. As radio signals get weaker, the supportable
data rates drop. Thanks to advancing radio technology on the ground and
configuration and software updates on the spacecraft, the "achieved maximum"
rates were better than expected based on distance alone: 115.2 kbps at Jupiter,
44.8 kbps at Saturn, 29.9 kbps at Uranus, and 21.6 kbps at Neptune. (From
Table 6-1 in Ludwig and Taylor, 2002, p. 34.
Urban's 1987 paper has different figures: a "recoverable" rate of 29.9 kbps
at Saturn and an unqualified rate of 14.4 kbps at Uranus and maybe Neptune.)

To overcome rate limitations at the Uranus and Neptune encounters, engineers
employed a few techniques, on the spacecraft and on the ground. The camera
images were a massive portion of the science and engineering data downlinked
to Earth and engineers were able to reduce the required bandwidth by
(i) using the spacecraft's Reed-Solomon encoder hardware to
efficiently encode error correction information in the full downlink data
stream and (ii) compressing the image data. (The Golay encoding used
at Jupiter and Saturn, was only applied to the non-image data, leaving the
downlinked image data without error correction except, I guess, through
ground processing of the raw pixels; Urban, p. 2.) Michael G. Urban's 1987
paper, "Voyager
Image Data Compression and Block Encoding" (thanks to
LouScheffer!),
discusses both techniques, but I'll only focus on image compression here.
(The success of the latter technique is dependent on the former since an
uncorrectable error can render an entire compressed image line unusable.)

Urban describes the "split-pixel compressor", FAST, used for images at Uranus
and Neptune in detail. The mathematics is beyond my abilities, but the
compression scheme is based on the differences between adjacent pixels in
an image line. For each 800-pixel line, an array of 800 differences
between pixels is constructed. (Not 799; is the first difference the
reference pixel's value?) These signed differences are mapped to 8-bit
unsigned integers:

 [image: Table 1: Pixel Difference Integer Mapping]

 Michael G. Urban,
 "Voyager
 Image Data Compression and Block Encoding", 1987

 Table I, p. 11,
 International Telemetering Conference, October 26-29, 1987,
 San Diego, California.

The 800 unsigned integers are divided into 160 5-element blocks.
Compression is then applied individually to each block. "Split pixel"
means each integer in a block is split into its k least significant
bits and its 8-k most significant bits, where k is chosen on
a per-block basis so that the 8-k MSBs are all zeroes for all 5
integers in the block. (It's the mapped unsigned integer that is split,
not the pixel value.) The value of k is encoded as a 3-bit block
ID in the compressed data:

 [image: Table 2: Pixel Block ID Mapping]

 Michael G. Urban,
 "Voyager
 Image Data Compression and Block Encoding", 1987

 Table II, p. 11,
 International Telemetering Conference, October 26-29, 1987,
 San Diego, California.

 I noticed that for distance d, its negative, -d, can
 be encoded in k bits as a two's-complement number in a range
 corresponding with that in the table. Which made me wonder what the
 purpose of mapping was, but I think it's because mapping groups
 magnitudes together with most significant bits of zero, thus making
 splitting possible. For example, in two's complement, +2 and -2 are
 000010 and 111110, respectively, whereas, in the mapping scheme, they
 are 000011 and 000100. Clever!

Since the 8-k bits are zeroes, it is not necessary to include those
bits in the compressed data. Note that the compressed word length is the
length of a difference's mapped, unsigned integer. If the maximum difference
in a block is outside the [-31,+32] range, all 5 pixel values are
sent as-is, not their mapped differences. (For example, a transition from
255 to 0 has a difference of -255, which maps to unsigned integer 510; this
can't be represented in 8 bits, so the raw 8-bit pixel values are sent.)

If I understand correctly, here's an example. Five uncompressed pixel
values occupy 40 bits. If the differences are in the range [-1,+2], the
compressed data is 3 bits for the block ID and 5 times 2 bits for the pixel
differences' mapped integers, or 13 bits. Nice! Differences outside the
[-31,+32] range, however, require 3 bits for the 000 block ID and 40 bits
for the raw pixel values, an undesired increase in size over simply sending
uncompressed pixel values without a block ID.

If there are too many 000 blocks with uncompressed pixel values, it is
possible for a compressed image line to exceed the space alloted for it in
the downlink telemetry frame. Rather than simply truncating each image
line on the right, compression is applied left-to-right and right-to-left
on alternating lines, the truncation on either side producing a ragged edge
on both sides. A missing pixel can be interpolated from the
corresponding pixels in the preceding and succeeding lines.

Incidentally, the downlink image/telemetry minor frame had the
following format (Urban, p. 9 and Figure 12, p. 17):

 Bytes 0-3 32-bit frame sync code
 4-4 8 zero bits
 5-5 8-bit format ID
 6-275 2160 bits of GS&E non-image science and engineering data
 276-277 16 bits of fill
 4960 bits of compressed image data:
 278-278 8-bit reference pixel
 279-587 2472 bits for image line N (left-to-right)
 588-588 8-bit reference pixel
 589-897 2472 bits for image line N+1 (right-to-left)
 898-1025 1024 bits for Reed-Solomon code block
 1026-1079 432 bits of indeterminate value to fill out MNF to 14.4 kb/s

 Total: 8,640 bits (1,080 bytes)

Some spacecraft group repeating cycles of minor frames into major
frames, but they usually include a minor frame counter in the minor
frame in addition to a format or mode ID, so I doubt that Voyager was
using major frames in this particular image/telemetry case.

 	November 2023 Memory Anomaly

 	Earlier Anomalies

FDS Memory Problems

 Just a note: I haven't heard of any problems with the CCS and AACS
 computers' plated-wire memory.

November 2023 Memory Anomaly

Significant events in the lives of the Voyager spacecraft always generate
a flurry of articles and discussions on tech sites around the web. In
November 2023, Voyager 1 began returning gibberish to Earth
instead of the normal, properly structured and formatted science and
engineering data. Through an amazing piece of detective work, the
ground team eventually pinpointed the cause: one of those CD4016A
static RAM dies had failed in the FDS memory. The die was one of
16 that made up a 256-word memory block, a block which contained code.

The following NASA blog post about tracking down the cause of the failure
was widely referenced in stories from major news outlets and in many other
online articles:

 (Paragraphs rearranged in chronological order by me.)

 ... a command sent to Voyager 1 on March 1. Called a "poke" by the team,
 the command is meant to gently prompt the FDS to try different sequences
 in its software package in case the issue could be resolved by going
 around a corrupted section ...

 On March 3, the Voyager mission team saw activity from one section of the
 FDS that differed from the rest of the computer's unreadable data stream.
 The new signal was still not in the format used by Voyager 1 when the FDS
 is working properly, so the team wasn't initially sure what to make of it.
 But an engineer with the agency's Deep Space Network, which operates the
 radio antennas that communicate with both Voyagers and other spacecraft
 traveling to the Moon and beyond, was able to decode the new signal and
 found that it contains a readout of the entire FDS memory.

 —Denise Hill,
 "NASA
 Engineers Make Progress Toward Understanding Voyager 1 Issue",
 NASA The Sun Spot Blog, March 13, 2024.

A media relations person at NASA, Hill probably wrote the blog post
after talking with someone at JPL, so I imagine there was a bit of a
telephone game
taking place as the story got filtered from the engineers through multiple
layers to the blog. The technical details are sketchy, so I have to wonder
if the DSN engineer really just found seemingly by happenstance that the
signal contained a memory dump (which the spacecraft just happened to send
out of the blue). It seems more likely to me that a memory dump command
was sent to Voyager 1 and, two days later, the engineers
looked specifically for a memory dump in the signal. And is there really
a "poke" command or was someone in the communication path simply trying to
describe what the engineers were doing as poking around in the innards of
the FDS?

As it turns out, I was more or less wrong about an explicit memory dump
command and I was more or less right about there being no "poke" command.
In a Reddit Ask Me Anything (AMA) discussion of Voyager, Robert Rasmussen
provided a more detailed description of how the problem was diagnosed:

 Although it carried no data, the radio signals we were receiving (carrier
 and subcarrier) were at the expected frequencies. This told us that the
 radio was probably working, that attitude control was keeping the high gain
 antenna pointed at Earth, and that normal power was apparently available to
 spacecraft subsystems. A repeating 1/0 modulation on the subcarrier told
 us that the telemetry modulation unit (responsible for inserting telemetry
 data into the radio signal) was also probably working, but that its
 convolutional encoder was getting no input from the flight data subsystem
 (which collects and packages the data before it's sent to Earth).

 We could also tell that commands to the spacecraft were being accepted and
 processed, because we were able to command Voyager 1 to make observable
 state changes to the radio signal it was sending us, such as the subcarrier
 frequency and modulation index.

 Given that information, we decided to focus our efforts on the flight data
 subsystem, trying to command it into different states. After resets and
 hardware variations resulted in no improvement, and commands to its
 software were not accepted, we decided to write directly to memory in the
 flight data subsystem computer to see whether we could directly alter the
 software's behavior. Our goal at that point had been to force a different
 telemetry mode (governing contents and data rate) on the suspicion that
 memory corruption might be at fault, but that some modes might be
 unaffected.

 After multiple attempts, that was eventually successful, but in a
 surprising way, producing data in a raw format that we did not immediately
 recognize. With ground system software we were eventually able to decode
 this signal, revealing it [to] be just an unformatted stream of flight
 data subsystem memory contents. Apparently, our memory poking had
 prompted direct memory access hardware to copy memory contents to the
 telemetry modulation unit port. This data revealed the corrupted area
 in the flight data subsystem's memory, which we could correlate with a
 particular memory chip. -[Robert Rasmussen]

 —Reddit
 AskScience
 AMA Series: We're the team that fixed NASA's Voyager 1 spacecraft and
 keeps both Voyagers flying. Ask us anything!, July 16, 2024.
 (Question
 and reply)

I'm still not convinced that the computer just randomly began copying its
memory to the telemetry modulation unit (TMU). And while there may be a
"poke" command in the sense of the primitive memory
peek and poke
functions some of us might remember from our microcomputer BASIC days,
there is apparently no "poke" command that performs higher-level testing
and debugging operations, a belief other authors inferred from Denise Hill's
NASA post. (Also see
Waggoner,
21:32. "So we decided to use hardware pokes ... 20 pokes for each
of the 10 modes", a technique they considered dangerous but necessary
since nothing else had worked.)

 Rasmussen's reply on Reddit does hint at an answer to a question I
 asked earlier: how are software/data updates
 received from the ground routed to and stored in the target CPU's RAM?
 In Rasmussen's description, I assume that the CCS computer, as the command
 processor, is directly poking values into the FDS RAM. (Which brings up
 another question! Since the CCS computer processes uplinked commands and
 data, are uplink frames structured in 18-bit units or 8-bit bytes?)

What happened when the FDS computer executed code in the memory block
with the failed bit? If the failed bit was in the opcode portion of
instructions, the CPU would execute an incoherent sequence of unintended
instructions. If the failed bit was in the arguments portion of
instructions, the CPU would execute a coherent sequence of instructions
with bad arguments. Of particular concern would be branches and memory
references to bad addresses (wrong addresses, not invalid addresses).
In either case of the failed bit position, the CPU very likely went off
into never-never land. The next timer interrupt (per
Tomayko) would jerk the CPU back to reality, in which it would stay
until it next executed code in the bad memory block. I wonder if the
flight software engineers could have taken advantage of the timer
interrupt to force the CPU to copy memory to the TMU port; i.e.,
overlay or redirect the interrupt handler (at address zero
per Tomayko) to copy the memory to the TMU port.

Bruce Waggoner, Voyager's Mission Assurance Manager, added more details in
a talk at !!Con 2024 (Bang Bang Con). (The following text is based on the
video captions; any awkwardness in the text is not apparent in Waggoner's
speaking, which flows very naturally.)

 (22:48)

 So the DSN — it's worth a paper in itself — the DSN
 figured out this amazing way to decode this data and give us what the data
 represented. And it turns out it represented something really cool. This
 was an accidental memory dump!

 ... Somehow it just said... I'm gonna read memory. And it was sending us
 memory dump, completely free ... We basically could see the whole memory
 and we noticed immediately that there were 256 contiguous words, 0x1400 to
 0x14FF, that were corrupted or had the potential to be corrupted. And
 these were all unfortunately in that layer of code under the P tables,
 routines used by every piece of the FDS, basically.

 Bruce Waggoner,
 "Saving Voyager 1! -
 Bruce Waggoner at !!Con 2024" (YouTube), 2024

 !!Con 2024, August 25, 2024.

(The P tables bring to mind the FDS real-time executive's
P periods; perhaps they're related.)
The JPL engineers now had a readout of the FDS memory. Fortunately,
periodic full memory dumps of all the Voyager computers is standard
practice (Matsumoto, p. 7) — at 40
bits per second, about the same speed as my ham-radio brother's surplus
Baudot teletype back in the 1970s! Still, that's only an hour to
download the full 8K words of memory from an FDS computer 15 billion
miles away. By comparing the new memory dump to the last good memory
dump, it would have been relatively easy for the JPL team to figure out
which memory block(s) had failed, at least in the code portions of memory.
This task was made even easier by the fact that JPL had been loath to make
changes to the FDS flight software (Matsumoto, p. 6).

One of Waggoner's transparencies has an abridged assembly language listing
for the failed 0x1400-0x14FF memory block:

 [image: FDS Assembly Listing]

 FDS Assembly Listing, Slide 31 from
 Bruce Waggoner,
 "Saving Voyager
 1!" (YouTube,
 23:00), !!Con 2024.

And below is the listing by itself. The fifth bit in each location of the
failed memory block is read as 0 by the CPU, which is incorrect if the bit
is supposed to be 1. In the listing, memory words in which the fifth bit
should be 1 are highlighted in yellow, with the correct value shown
immediately to the right:

13DE 1C00 GETEID: SRB UMRA /SAVE RETURN ADDRESS
...
1400 7829 7839 PWD RMFC,R2 /CALCULATE ADDRESS AND GET IDS FOR 400
...
1461 1C09 1C19 MOD15: SRB LMRAN /SAVE RETURN ADDRESS
...
146D F09F COPY: OUT 7,SETAD /SET ADDRESS DOWN
...
1494 F09F SAFECA: OUT 7,SETAD /SET ADDRESS DOWN
...
14B0 5F84 5F94 PLSCL: MRD AUTOCF /PLS AUTO CAL FLAG
...
14CA 1C08 1C18 PLSCHK: SRB LMRA /SAVE RETURN
...
14F0 37AF 37BF PLSTBL: CON $X37AF
14F1 ADFA CON $XADFA
14F2 FA7F CON $XFA7F
14F3 AFB0 PLTZ: CON $XAFB0 /'0' NOT USED
...
14F4 F09F ULINK: OUT 7,SETAD /SET ADDRESS DOWN
...
14F8 03DE XGETEI: JMS GETEID /GET ENG ID SUBROUTINE
14F9 050A 051A JMP UVECTR /RETURN TO CALLER IN LOWER MEMORY
14FA 0231 XCMROT: JMS CMROT /CODED COMMAND PROCESSING
14FB 050A 051A JMP UVECTR /RETURN TO CALLER IN LOWER MEMORY
14FC 02B6 XCHSUM: JMS CHSUM /CHECKSUM
14FD 050A 051A JMP UVECTR /RETURN TO CALLER IN LOWER MEMORY
14FE 02EF 02FF XLTS: JMS LTS /LTS SUBROUTINE
14FF 050A 051A JMP UVECTR /RETURN TO CALLER IN LOWER MEMORY

 I have no idea what the CPU operations mean or do, so I'm going to
 engage in some idle guesswork. That looks like the beginning of a
 jump table at the end of the block, where each entry is a JMS-JMP
 pair of instructions. If — and I emphasize
 If — JMS is a jump-to-subroutine call and JMP
 is an unconditional-jump to an address in a register, the JMS-JMP
 pairing suggests to me that the FDS CPU has no call stack, which
 is not surprising for a real-time processor with limited memory.
 For example, consider three routines: A calls B calls C. When A
 executes a JMS instruction to call B, suppose JMS saves the return
 address in A to a dedicated return-address register. If B wants
 to call C, B must first save A's return address (using SRB?) to
 a separate register, say UVECTR; otherwise, A's return address
 would be overwritten by the JMS call to C. After C finishes and
 returns to B, B would then return back to A by JMPing to A's
 return address saved in the separate register, UVECTR. Again,
 this is purely guesswork on my part.

Obviously, the code in the failed memory block needs to be moved. If a code
sequence spans the beginning of the failed block, then the preceding code must
be moved as well. A code sequence at the end of the failed block could be
handled by appending a jump instruction to the block in its new location.
If a data/instruction table spanned one of the boundaries, the entire table
would have to be moved, not just the portion in the failed block. Finally,
any references to locations in the moved code/data must be patched with the
new addresses:

 Once we narrowed it down to 256 consecutive locations of memory
 that were corrupted
 (as
 we talked about here), we then examined the source code
 to see what was contained in those 256 consecutive locations.
 As
 discussed in another answer, those locations contained a number of
 subroutines used (called) in many places throughout the rest of the
 flight software. Those were critical subroutines.

 Therefore, the only viable solution was to try to find available portions
 of memory elsewhere and move those subroutines to those other available
 locations. There was not a single available chunk of memory that was large
 enough to accommodate all of those subroutines (256 words), so we had to
 break up the subroutines into pieces and move them to whatever small chunks
 of available memory we could find and then insert jump instructions between
 those broken-up portions.

 (EDIT: We also had to fix up any internal jumps within each relocated piece
 to account for the fact that the jump destination addresses had changed.
 Then we had to identify all the callers of those subroutines and modify
 each one to point it to the new (relocated) start of each subroutine.)
 -[David Cummings]

 —Reddit
 AskScience
 AMA Series: We're the team that fixed NASA's Voyager 1 spacecraft and
 keeps both Voyagers flying. Ask us anything!, July 16, 2024.
 (Question
 and reply)

Regarding Cummings' last paragraph, including relative branch instructions
in the FDS CPU's instruction set would have made little sense. Given the
limited address space, there would have been no savings in code storage
since there is not much difference between an address and an offset.
Adding a program-counter-plus-offset adder would have greatly increased the
complexity of the electronics and probably would have had a serious impact
on performance.

Waggoner, of course, adds many interesting details. Rather than quote his
whole presentation, I want to take note of two points. First, the team had
to ensure any changes they made did not violate timing constraints in FDS
processing. Waggoner gives an example of wanting to relocate some of the
code in the failed memory block to lower memory, but doing so would have
exacted a performance penalty when switching between upper and lower memory:

 I admit I'm a little confused by the example. Lower memory is the
 lower 4K words (0x0000-0x0FFF) of the FDS computer's full 8K of RAM; it
 is normally used for program code and is thus normally write-protected.
 Upper memory is the upper 4K words (0x1000-0x1FFF) of RAM; it is
 normally used for program data and is not write-protected. The failed
 memory block, 0x1400-0x14FF, is in upper memory and it
 nevertheless contained program code. So, if the code being
 relocated was previously not write-protected, why would they be concerned
 about it not being write-protected now?

 (26:14)
 Next we had to repair the codes. This is 256 instructions that had to be
 relocated. We had to preserve the data of course to get our data back,
 but timing was key, because every time we added a step to do the extra
 jumps, it would play with the timing of the program, which could kill us.
 So we understood we had to be super careful with the timing.

 (28:25)
 Now we have to get the science [data] back ... Again, we were out
 of space ... The engineering high rate memory that we were cannibalizing
 [earlier for engineering data recovery] — it was gone.
 So we found an old memo from the 1980s that mentioned free memory. We
 looked at the memory readouts and it looked like it was just not being
 used. So we assumed it was free and went with that. This was an upper
 memory and it wasn't in [a] write-protected region of memory, which was
 a concern. Because we would like it to be write-protected. But if we
 went to lower memory, it takes an extra step to go between high and low
 memory. We were worried about the timing implications again. So we ate
 the risk that we were writing to unprotected memory, and patched it on
 May 18th and it worked as well.

 Bruce Waggoner,
 "Saving
 Voyager 1! - Bruce Waggoner at !!Con 2024" (YouTube), 2024

 !!Con 2024, August 25, 2024.

(Also see my discussions of upper and lower FDS memory under
The CPUs and of the FDS computer's general timing
requirements under Performance
Constraints.) I was surprised that memory was at such a premium.
Jones and Risa (1981, pp. 6-7) said the FDS
supported 30 science and engineering data telemetry modes; Table 2 in their
paper lists 29 modes, 10 of which are specifically for image data. After
the planetary encounters, one would expect the "retiring" of the cameras
and image handling code to free up substantial amounts of memory, but
apparently not. Two possible reasons I can think of: (i) tight
coding resulted in the code for the telemetry modes being so entangled that
it was difficult to cut out just the image handling part and (ii)
the FDS software had been patched so often over the years that it was
difficult to tell which code was still in use and which code wasn't.

Which leads us to Waggoner's second point: the loss of FDS expertise
after 47 years left the anomaly team very unsure about how the FDS flight
software worked. Proposed changes were subject to intense scrutiny and
discussion:

 (14:07)
 So our top priority was to figure out what the FDS was and how it worked.
 Because unfortunately the person who was the real expert had retired
 decades ago and the person who was their fill-in, their backup, had
 retired two years ago.

 (15:43)
 We had that level of uncertainty. So the only thing we could do is dig
 in and research more and debate. So we had a lot of debates between our
 flight team and tiger team, trying to figure out what the best thing is
 to do. But ultimately, we had to suck it up and guess at some point.
 And we made the right guesses, which is good.

 (27:39)
 So what they did is they took every possible thing that could go wrong,
 they made a list and they iterated their code adjustments with that list
 with multiple people. And that was essentially how they came up with
 these patches.

 Bruce Waggoner,
 "Saving
 Voyager 1! - Bruce Waggoner at !!Con 2024" (YouTube), 2024

 !!Con 2024, August 25, 2024.

Taking 15-million-mile baby steps, JPL limited the initial changes to those
needed to restore the handling of engineering data (spacecraft health and
status). The updated software was uplinked on April 18, 2024 and two days
later, on April 20, a normal telemetry stream was received from
Voyager 1. Naturally, a big celebration was in order; see
the image below! A month later, 2 of the 4
operating science instruments began
returning
data and, a month after that, the other 2 instruments were back online.
However, the prior functionality of the spacecraft was still not fully
restored:

 While Voyager 1 is back to conducting science, additional minor work is
 needed to clean up the effects of the issue. Among other tasks, engineers
 will resynchronize timekeeping software in the spacecraft's three onboard
 computers so they can execute commands at the right time. The team will
 also perform maintenance on the digital tape recorder, which records some
 data for the plasma wave instrument that is sent to Earth twice per year.
 (Most of the Voyagers' science data is sent directly to Earth and not
 recorded.)

 —Anthony Greicius,
 "Voyager
 1 Returning Science Data From All Four Instruments",
 NASA News, June 13, 2024.

As the recovery from Voyager 2's bit flip in 2010 showed,
this follow-on work can take months:

 [W]hen the V2 experienced a bit flip in the FDS in 2010, it took about two
 weeks to recover enough to receive the engineering data, and another two
 weeks to receive the science data. It took another four and one-half
 months to adjust the timing delay caused by the anomaly and resynchronize
 the CCS and FDS clocks. Realigning the baseline events to the regular
 schedule had to be delayed even longer due to other activities competing
 for the resources. In the meantime, adjustments had to be made in mission
 operations to compensate for this timing shift.

 Sun Kang Matsumoto,
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF), 2016

 p. 5, 2016 SpaceOps Conference, Daejeon, Korea.

Incidentally, the flight software team gave some consideration to FDS memory
problems that potentially lie ahead:

 Yes, as a result of our experiences with this anomaly, we are now in a
 better position to diagnose other memory errors that may occur in the
 future. We now have a small-footprint program that can be uplinked to a
 small portion of memory, which will then send to the ground a full memory
 read-out of all of the memory. We can use this in the future if we suspect
 another memory error has struck. -[David Cummings]

 —Reddit
 AskScience
 AMA Series: We're the team that fixed NASA's Voyager 1 spacecraft and
 keeps both Voyagers flying. Ask us anything!, July 16, 2024.
 (Question
 and reply)

The program is called MIN MRO
(Waggoner,
25:31).

Earlier Anomalies

October 1981 — Voyager 1

The Voyager spacecraft have both experienced FDS memory anomalies in the
past. Frequent mention is made of the complete failure of one of
Voyager 1's FDS computer's memory, but details are always
lacking. I did find out the date of the failure, October 6, 1981:

 [image: Voyager Problems]

 Summary of Voyager spacecraft problems prior to 1989.
 (Source: The Voyager Neptune Travel
 Guide, "Hip Pocket Handy Facts" insert)

The fact that all 8K words of FDS-B's memory were lost suggests that this
was not the unlikely large-scale failure of the CD4016A RAM dies, but
instead a failure of even only one chip in the interface between the
CPU and RAM, perhaps on the data or address buses. Tomayko offers a
tantalizing but confusing clue in the following quote. He is discussing
the Backup Mission Load on Voyager 2 and the complete loss
of memory in an FDS computer. However, this has never happened on
Voyager 2, only on Voyager 1. Is Tomayko
referring to the latter spacecraft's 1981 failure? (The failed chip
in the November 2023 anomaly caused a real failed bit throughout a
256-word memory block; having a failed bit in a readout register results
in a perceived failed bit throughout all 8K words of memory.)

 As pioneered on Mariner X, a disaster backup sequence was stored in the
 Voyager 2 CCS memory for the Uranus encounter, and later for the Neptune
 encounter. Required because of the loss of redundancy after the primary
 radio receiver developed an internal short, the backup sequence will
 execute minimum experiment sequences and transmit data to earth; it
 occupies 20% of the 4K memory. CCS programmers are studying ways to use
 some bit positions in a failed Flight Data System memory to compensate for
 the shortened memory in their system. A readout register in the Flight
 Data System has a failed bit, giving the impression that the entire memory
 has a one stored in that position in each word. Remaining "good" areas may
 be assigned to the use of the CCS.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Six, Section 2, p. 176.

Pre-1985 — Voyager 2

At an unidentified time before this next paper was published in January 1985,
Voyager 2 lost a 256-word FDS memory block, 4 decades before
the same thing happened on Voyager 1:

 On Voyager 1, as noted, one of the FDS memories has failed. On Voyager 2,
 256 of the 8192 memory locations (16 bit words) have failed in one of the
 memories (FDS-B). All memory locations remain intact in the other (FDS-A)
 except that bit 12 at address 0F9016 is
 permanently true (1).

 W.I. McLaughlin and D.M. Wolff,
 "Voyager Flight
 Engineering: Preparing for Uranus" (abstract), 1985

 pp. 5-6, American Institute of Aeronautics and Astronautics (AIAA),
 23rd Aerospace Sciences Meeting, January 1985, Reno, NV.

January 1986 — Voyager 2

Shortly before Voyager 2's January 24, 1986 encounter with
Uranus, one bit failed in one location in the secondary FDS computer's RAM.
Fortunately, this didn't totally mangle the downlink telemetry stream as
happened in the 2010 bit flip and the 2023 memory loss. Since it affected
the much needed compression of image data, the bit failure was still a
potentially serious problem with respect to the return of viable images
from Uranus (and later Neptune) to Earth.

 Six days before the spacecraft's closest approach to Uranus another problem
 was noted: photographs from Voyager 2 were marred by large
 blocks of black and white lines. Since only compressed images displayed
 the curious blotches, [a bug in the decompression software on the
 ground was suspected but ruled out as the cause] ...

 ... After the [FDS memory] readout was received at the J.P.L., what
 was in the computer's memory was compared bit by bit with what should have
 been there. It was discovered that a single bit of an instruction word,
 which should have been a 0, was a 1. There were two possible explanations
 for the incorrect bit: either a cosmic ray had caused the bit in the memory
 cell to flip from 0 to 1, in which case it could easily be reset to 0, or
 there had been a permanent hardware failure in the memory.

 The FDS experts at the J.P.L. were immediately directed to write a program
 that could act as a patch, circumventing the possibly failed memory
 location. The patch was programmed into the spacecraft's computer on the
 evening of January 20, four days before the closest approach. The next
 morning the transmission of fault-free compressed photographs resumed.
 Although the troublesome memory location had been bypassed by the patch,
 a command that could reset the incorrect bit was also transmitted to the
 spacecraft. The bit did not reset, however, and is considered to have
 failed permanently.

 —Richard P. Laeser, William I. McLaughlin and Donna M. Wolff,
 "Engineering
 Voyager 2's Encounter with Uranus", Scientific American,
 November 1986, pp. 44-45.

April 2010 — Voyager 2

In April 2010, Voyager 2 began sending an initially unreadable
stream of data. With a lot of effort, it was determined that a bit had
flipped in the FDS memory. The memory location was successfully reset,
but it was a months-long process to return the science handling to normal;
see the Matsumoto quote above.
Interestingly, the ground team apparently still had some FDS simulation
capabilities:

 On May 12, engineers received a full memory readout from the flight data
 system computer, which formats the data to send back to Earth. They
 isolated the one bit in the memory that had changed, and they recreated the
 effect on a computer at JPL. They found the effect agrees with data coming
 down from the spacecraft. They are planning to reset the bit to its normal
 state on Wednesday, May 19.

 —NASA,
 "Engineers
 Diagnosing Voyager 2 Data System -- Update", NASA News,
 May 24, 2010.

In 2010, as in 2023, the Deep Space Network (DSN) played a key role in
deciphering the mishmash of data being transmitted by the spacecraft.
I was surprised at how much mission-specific processing takes place in
the DSN ground system as opposed to the spacecraft's JPL ground system.
Remes
turned up a report about this anomaly that gives us a taste of what the
2023-2024 ground teams had to deal with:

 An analysis by Steve Howard of the data received at the station shows that
 telemetry frames are longer than expected by 80 bits with every fourth
 frame only 60 bits longer. He compared the 26 April data with the last
 data received on 21 April and found that the actual frame time was 48.46
 seconds instead of the nominal 48.0 seconds (an increase by nearly a half
 a second per frame, which exactly explains the 75, on average, extra bits
 we are seeing in the data. He asked, and it was agreed that the station
 configure a parallel string to try to process the telemetry at 158.5 bps
 as well as the nominal 160 bps. During this morning's pass, 28 April,
 the station configured a second Downlink Channel Controller (DCC). They
 still saw the 80/60 extra bits per frame at the backup DCC. The DCC could
 frame sync on those 80 bits longer but not the fourth frames. At any rate,
 the AMMOS can not currently process these data.

 —"Cosmic
 Ray Subsystem Report on the Voyager-2 Flight Data System Anomaly and the
 Subsequent Data Impact" (PDF), 2010, Appendix A, p. 8.

(The Advanced Mult-Mission Operations System,
AMMOS, is a JPL-developed, generic
"set of mission operations and data processing capabilities for robotic
missions" and, I gather, a generic term for a spacecraft's specific,
AMMOS-based ground system. These capabilities include the front-line
mission control functions as well as the off-line sequencing and analysis
tools such as SEQTRAN, etc.)

 [image: Voyager Team Celebrating]

 The Voyager team celebrates the successful
 resumption of intelligible data transmissions from Voyager
 1! In November 2023, the spacecraft began sending jumbled
 data. The problem was eventually traced to a failed section of
 FDS memory. The flight software team relocated the code in the
 failed section elsewhere and were relieved and excited when
 Voyager 1 resumed sending good data on April 20, 2024.
 Near side of table, L-to-R:
 Jeff Mellstrom, Suzanne Dodd, Linda Spilker, and Jim Donaldson.
 Far side of table, L-to-R:
 Kareem Badaruddin, Todd Barber, Jennifer Herman, and Lu Yang.
 Far end of table:
 Sun Matsumoto.
 Seated against wall, L-R:
 Joey Jefferson, Nshan Kazaryan, Dave "Goal!" Cummings,
 and Armen Arslanian.
 Standing in the doorway:
 Bruce Waggoner.
 (Source:
 "NASA's
 Voyager 1 Resumes Sending Engineering Updates to Earth" and
 "Voyager
 Team Celebrates Engineering Data Return", April 2024, JPL.)

Miscellaneous Information

Ben-Hur Rides Again!

Suzanne Doddd: Early Voyager Years

Larry Zottarelli

Real Programmers & Nightmare Networkers

Clash of Viking Mainframes

Ben-Hur Rides Again!

Eat your heart out,
Lew Wallace, author
of Ben-Hur! I don't recall ever seeing the whole movie, but
I did read the novel. My memory is that the chariot scene was even more
exciting in the book than in the movie, but neither hold a candle to
Voyager 2's launch troubles!

Based on Tomayko's telling (Box 6-1, p. 179-180, in Computers in
Spaceflight), my understanding is that the Voyager 2
spacecraft had separated from the launch vehicle and was in the process
of extending the booms while at the same time trying to correct its
whopperjawed attitude. Things began to go wrong, but I'll let Rasmussen
and Litty tell the story:

 The first launch provided more excitement with little delay. An
 unbelievable combination of events shortly after injection initiated a
 chain reaction that ultimately triggered nearly every single fault routine
 in the AACS repertoire. Briefly, the sequence happended as follows.

 The spark to the fuse was a partially latched boom, resulting in high
 tip-off rates at propulsion module separation. Meanwhile, reconfiguration
 activities and a precautionary restoration of isolation value states had
 temporarily disabled attitude control. While thrusters were waiting to
 fire, the tip-off effects were accumulating, so that by the time the
 isovalve power requests reached the top of the queue, a large angular
 offset existed. By coincidence, thruster control was re-enabled just
 before sequence activation of thruster fault detection. This quickly
 responded to the large error by again disabling thruster firing in
 preparation for a switch to backup thrusters. More isovalve activity
 ensued causing further delays, three more repetitions of the error
 reponse, and finally a self-inflicted heartbeat failure, all within
 sixteen seconds of separation!

 This last action was pivotal in resolving the situation. The new system,
 with no memory of past difficulties, including the large error, quickly
 brought the rates under control. Finding the sun nowhere in sight, this
 system then proceeded automatically to search for and acquire celestial
 references, achieving success less than three hours after launch. Ground
 operations spent the next several days recovering.

 —R.D. Rasmussen and E.C. Litty,
 "A Voyager Attitude
 Control Perspective on Fault Tolerant Systems" (abstract), p. 246,
 American Institute of Aeronautics and Astronautics (AIAA)
 Guidance and Control Conference, August 19-21, 1981,
 Albuquerque, New Mexico.

That last exquisite sentence is priceless!

Suzanne Dodd: Early Voyager Years

A couple of additional paragraphs from the Caltech Heritage Project article:

 DODD: It was quite a bit different. But, you come in, and it was a fairly
 routine thing. You would be working on a sequence, and it would take six
 weeks to develop that sequence, and then there was different steps, and
 different software programs, and different reviews. That process then
 repeats itself every six weeks. From a work standpoint, you're doing a
 fair amount of the same thing, although you sometimes had special events.
 You sometimes worked with a particular science team on a special
 calibration they wanted to do. What I do remember is the Voyager team,
 the sequence area had a lot of pranksters in it. They would like fill
 a person's drawer with water and put fish in there, and so when they came
 in the next day, the water would splash and they'd have these goldfish
 swimming around in their desk. [laughs] It's that kind of a team
 camaraderie. Most people would eat lunch together, too. You just
 really were cohesive as a team.

 ZIERLER: What areas did you have real responsibility, even in the early
 years?

 DODD: I hired in when four other people hired in. Now, Voyager went
 through Jupiter and Saturn, and then it had a bathtub, because it had five
 years to get out to Uranus. So a lot of people left. Because Jupiter and
 Saturn were like 18— maybe two years apart, 18 months to two years
 apart in encounters. Then there was this lull, so they had to cut—
 a lot of people left, and/or they just needed to trim staffing. A bathtub
 in staffing, because there was such a long duration. So, I was part of
 the crew that came back in, new group of crew that came back in during
 Uranus. There were four of us that hired in all at the same time, to do
 basically the same job, which was sequencing. It was basically a very
 junior job on Voyager, sequencing engineer, but a super exciting mission.
 Really gets you going for liking this type of work. Then, when it came
 to Neptune, I got to be the lead sequence engineer. So, of the four of
 us that were doing it, I got the closest approach sequence.

 David Zierler,
 "Suzy
 Dodd (BS '84), Engineer and Deep Space Pioneer", 2023

 Caltech Heritage Project, June 9, 2023.

Larry Zottarelli

In an article about astrophysicists debating whether or not
Voyager 1 actually had entered interstellar space, the following
encapsulation of a CNN report on Larry Zottarelli appeared:

 [Determining if Voyager 1 has really entered interstellar space] will
 also be just a little bit harder than it was last week, because the last
 original member of the Voyager team has retired. Larry Zottarelli,
 aged 80, left NASA's employ this week after 55 years on the job.
 Zottarelli helped to develop Voyager's on-board computers and has
 worked on the mission since 1975. CNN reports that he was sent on
 his way with a handshake from actress Nichelle Nicholls, Star Trek's
 Lt. Uhura. NASA is reportedly seeking a replacement fluent in FORTRAN,
 Algol and assembly language for the Voyagers' 250 KHz General Electric
 18-bit TTL CPUs, complete with single register accumulator and bit-serial
 access to 4096-word plated-wire RAM.

 —Simon Sharwood,
 "Has
 Voyager 1 escaped the Sun yet? Yes, but also no, say boffins",
 The Register, October 30, 2015.

Boffin is British slang for a scientist or engineer! And the original
CNN
report has pictures, especially of Zottarelli with Nichelle Nichols
AKA Lt. Uhura! (The Register gets it wrong, however. The
picture with Nichols is from the Voyager 30th anniversary celebration
in 2007, not Zottarelli's retirement.)

The following is from an (unpublished?) article about the Voyager team:

 The quiet voice, that's Larry Zottarelli, the programmer and "computer
 whisperer", understanding his machines like no one better does.

 —Joachim J. Kehr,
 Editor SpaceOps News of the
 Journal of Space Operations & Communicator;
 April 2016,
 "Voyager —
 The Right Staff" (PDF), p. 4.

I wasn't fortunate enough, but I think I would have liked working with him!
(The Kehr article includes an interview with Suzanne Dodd.)

I don't quote it here, but this widely cited, 2017 article in the New
York Times leads with a picture of and story about Larry Zottarelli:
"The
Loyal Engineers Steering NASA's Voyager Probes Across the Universe",
by Kim Tingley, New York Times, Aug. 3, 2017.

Real Programmers & Nightmare Networkers

In the early 1980s, Ed Post wrote of the non-quiche-eating Real Programmers
who make the world go round:

 [image: [Magazine cover]]

 Some of the most awesome Real Programmers work at the Jet Propulsion
 Laboratory in California. Many of them know the entire operating
 system of the Pioneer and Voyager spacecraft by heart.
 With a combination of large ground-based FORTRAN programs and small
 spacecraft-based assembly language programs, they can do incredible
 feats of navigation and improvisation, such as hitting 10-kilometer
 wide windows at Saturn after six years in space, and repairing or
 bypassing damaged sensor platforms, radios, and batteries. Allegedly,
 one Real Programmer managed to tuck a pattern-matching program into
 a few hundred bytes of unused memory in a Voyager
 spacecraft that searched for, located, and photographed a new moon
 of Jupiter.

 —Ed Post,
 "Real
 Programmers Don't Use Pascal", Datamation, July 1983,
 "READERS' FORUM", pp. 263-265.
 (HTML version; the
 full
 magazine issue is available as a large PDF.)

In the 1990s, the late Peter
Fenelon of the University of York wrote a guide for spotting the different
species of academic programmers:

 [The Nightmare Networker] relishes complexity. The database runs on an
 IBM somewhere in Canada; the X-windows front end on a Hewlett-Packard in
 Switzerland, the inference engine on a Cray in Indonesia and the program
 itself on Voyager II... each part of the packages
 employs different comms protocols depending upon a wide range of
 factors including the phase of the moon...

 —Pete Fenelon,
 "Academic
 Programmers - A Spotter's Guide", 1997?

Clash of Viking Mainframes

This section is not related to Voyager. While searching for information
about the Voyager flight computers, I landed on Herb Johnson's web page,
"COSMAC
1802: history of microprocessors in space", and his accompanying
notes
about the Viking flight computers. The notes rely mostly on
Tomayko's report and a Martin Marietta Corporation
report, Viking Software Data.
(The links to the report in Johnson's notes don't work anymore.)

Preceding the Voyager program by several years, the
Viking mission to
Mars began in 1968. Two identical pairs of spacecraft were launched in 1975
and arrived at Mars in 1976. Each pair consisted of (i) an
Orbiter
which went into orbit around Mars and (ii) a
Lander
which landed on Mars.

JPL was responsible for the Orbiter. Martin Marietta designed and developed
the Viking Lander and its flight software. They also developed the
ground-based, mission operations (mission control) software for the Lander.
Afterwards, Martin Marietta wrote an evaluation of the software development
process for the U.S. Air Force, the document used by Herb Johnson above.

Viking Software Data turned out to be very interesting reading.
After the introductory material, the document consists of individual
evaluations of different techniques used in the development and testing
process. Each evaluation is structured as follows: name, summary, application
considerations, recommendation, history, description, qualitative results,
and quantitative impact.

I was motivated to write "Clash of Viking Mainframes" upon being taken aback
by the description of the second technique, "DIFFERENT DEVELOPMENT/INTEGRATION
SITES". Martin Marietta developed and tested the mission operations software
on Control Data Corporation (CDC) mainframes at their Denver, Colorado
facility (denoted MMC) and then converted the source code
to be compiled and tested again on the target Univac and IBM mainframes at
JPL's Pasadena, California Viking mission control center! This is somewhat
akin to developing a native Windows application under Linux because you only
had a Linux PC; though possible, it would be unthinkable today. However, as
you'll see, there were some very good reasons for this approach —
some known beforehand and some uncovered during the process — and
I can't fault Martin Marietta or JPL for taking this approach.

NASA management feared JPL overextending itself, so it assigned the Orbiter
to JPL and the Lander to Martin Marietta. However, the Lander integration
and test and the actual operations would still take place at JPL. So:

 Martin-Marietta Corporation, the Viking Lander contractors, had to do some
 dangerously unique software development when NASA decided to move control
 of the Lander from Langley to JPL. Since Orbiter software development and
 giving support to other missions tied up JPL's computers, Martin took the
 chance of developing the Lander software in a "minimal higher order
 language," specifically a hopefully transportable subset of FORTRAN.
 Martin's solution reflected its recent migration to IBM 370 series and
 Control Data 6500 series computers at its Denver plant. These were
 technologically more advanced than the JPL computers and could not be
 trusted to produce directly transportable software. The idea worked, but
 Martin admitted that the requirement for delivering mission support
 software 10 months before the flight provided strong motivation.

 James E. Tomayko,
 Computers in Spaceflight: The NASA Experience, 1988

 Chapter
 Eight, Section 3 (Unmanned mission control computers), p. 267.

And getting into the "DIFFERENT DEVELOPMENT/INTEGRATION SITES":

 APPLICATION CONSIDERATIONS: The forecasts for the loads on the computer
 sets at JPL indicated that the MMC portions of the Viking operational
 software system could not be developed on them. The MMC facility contained
 CDC 6400, CDC 6500 and IBM 360/75 computer sets, whereas the JPL facility
 contained UNIVAC 1108 and IBM 360/75 computer sets. The operating systems
 of the IBM computers at the two facilities were different. No equipment
 similar to the JPL UNIVAC 1108 system was available in the Denver area.
 Pathfinder studies indicated software could be developed on non-target
 computers without creating any serious conversion problems.
 (p. 30)

 HISTORY: One of the problems which faced the management of the Viking
 mission operations lander software development was that the development
 computers differed from the operational computers. The Martin Marietta
 facility consisted of CDC 6400 and CDC 6500 and IBM 360/75 whereas the JPL
 computer facility consisted of IBM 360/75s and UNIVAC 1108s. Thus the
 software conversion task became a management concern very early in the
 software development activities. (p. 31)

 Martin Marietta Corporation,
 Viking
 Software Data: Final Technical Report (15MB PDF), 1977

 May 1977, RADC-TR-77-168.

Keep in mind that lacking the target Univac mainframe could not be remedied
by running down to the local computer store, picking a computer off the rack,
and then shoving it in a spare closet with an ethernet cord back at the office.
A mainframe computer and its peripherals were very expensive and you had to
commit to sizeable initial and long-term investments in real estate (new or
existing housing for the installation), utilities (power, etc.), supplies
(drums, disks, tapes, punch cards, etc., etc.), and especially all the
support personnel needed to manage and run the whole thing.

 I should note that my only experience with mainframes was with a
 Univac 1100-series mainframe in the University of Maryland's Computer
 Science department in the late 1970s. (They had two 1100s, but I only
 ever used one of them.) Supporting hundreds if not thousands of students,
 faculty, and staff meant that the department's mainframe installation fit
 my perhaps overbroad characterization above, but I realize that smaller
 groups or companies could have much leaner installations.

The CDC 6500 had two 6400 CPUs; the separate 6400 computer was apparently
not used for Viking development. I don't know why the report says here that
Denver had an IBM 360/75 when elsewhere it speaks of a 370, specifically
a 370/155 on p. 260. The computers from the three companies had widely
differing CPU architectures:

	Computer
	Words
	Integers
	Floats
	Characters

	IBM 360 & 370
	32 bits
	Two's complement
	32/64 bits
	8-bit EBCDIC

	UNIVAC 1108
	36 bits
	One's complement
	36/72 bits
	6-bit FIELDATA

	CDC 6500
	60 bits
	One's complement
	60/108 bits
	6-bit CDC display codes

Pathfinder studies showed the feasibility of developing the software
on the CDC mainframes and converting it for the IBM and Univac mainframes,
as well as providing guidance and recommendations on practices and techniques.
I think two particular practices contributed to the ultimate success of the
development process: (i) determining a minimal subset of Fortran that,
if adhered to, would significantly reduce the level of manual effort in the
conversion process and (ii) educating the programmers in the
whys of the minimal subset, in the 3 different architectures,
and in the importance of writing portable code.

The conversion process was successful, but not without a number of serious
problems. The minimal subset of Fortran couldn't encompass some of the
different but needed operating-system-specific capabilities. Assembly
language code was required in some cases for performance reasons or to
stay within memory limitations. IBM assembly code could be assembled and
tested to some extent on MMC's IBM 370, but the Univac assembly code could
only be developed and tested on JPL's 1108. Fortran programs tested and
changed at JPL had to have the changes back-ported to the CDC source code,
an annoying and error-prone task.

I was very surprised at how difficult the IBM computers made everything,
and not just in the conversion process. JPL had an unhappy history with
IBM 360s according to Tomayko (Chapter 8, Section 3,
p. 265). In late 1969 and early 1970, JPL received two hand-me-down 360s
from two other NASA centers; JPL later purchased a third, brand-new 360.
The one previously used on the Apollo program had a bespoke, real-time
operating system from IBM. At the time of Mariner 9's launch in May 1971,
the ground software failed every 5 hours. By the time Mariner 9 reached
Mars in November, the failure rate had thankfully dropped to only
every 20 hours! (I am reminded of a colleague in the 1980s who went to work
at an IBM facility in Maryland for a low-earth-orbiting satellite. Per his
telling, the ground system would usually crash once during a 20-minute
satellite pass, but the system rebooted fast enough to keep the pass from
being a total waste. Again, this was in the 1980s and I don't remember if
the system used an IBM or non-IBM minicomputer.)

 Aside: The first hand-me-down IBM 360 was from Johnson Space Center in
 Houston, Texas; the second was from the closure of NASA's ERC: "[I]n
 December 1969, the Nixon administration quickly moved to shut down the
 only NASA laboratory ever closed, the Electronics Research Center in
 Cambridge, Massachusetts, which Nixon was said to have perceived as a
 Kennedy pork project." Good ole Nixon. (Butrica)

Some mistakes were self-inflicted, although I would not count among those
good-faith decisions that just didn't turn out as planned. All the logic
and reason in the world can't foresee, for example, a faulty IBM Fortran
compiler on JPL's 360. However, Martin Marietta should have foreseen the
major hit the Viking effort would take from switching the CDC 6500's
operating systems from CDC's unofficial MACE OS to its official SCOPE OS
in the middle of development. Viking would not have been the only project
supported by the CDC mainframe and perhaps MMC calculated that the benefits
to other projects which needed SCOPE would outweigh the cost to Viking and
other ongoing projects.

Despite MMC not having a Univac 1108, the development, conversion, and testing
of the 1108 software was much smoother than for the IBM software. Being able
to compile and test the Univac programs at JPL anytime day or night
was probably a significant factor in this.

 QUALITATIVE RESULTS: ... This occurred in the IBM 360 conversion effort.
 Due to the operational procedures at JPL, in order to receive the necessary
 turnaround time to do program conversion and testing, blocks of computer
 time had to be scheduled. These blocks of time were usually 4 to 6 hours
 in duration during the week starting at 9:00 PM to 4:00 AM, and up to 48
 hours duration on the weekends. The pressures of trying to make as many
 runs as possible and meet delivery schedules forced many extra errors into
 the software. Instead of doing a detailed analysis of the code and the
 dump of the program the programmer or engineer would shot-gun many runs to
 try to fix errors. During longer block-time stretches many engineers and
 programmers would work until they introduced new errors due to physical and
 mental exhaustion. This altering of normal work habits did not occur on
 the 1108 conversion effort. The turnaround was excellent and the machine
 was available for use during normal working hours. (p. 34)

 ... The JPL version of OS was a real-time system with standard OS features
 but was a different release than the MMC's IBM OS. This caused problems in
 the conversion effort. In one instance the difference in FORTRAN compilers
 between MMC IBM and JPL IBM caused schedule slippages due to errors in the
 target compiler that were not discovered until the conversion process
 began. This problem happened early in the conversion process and two steps
 were taken to help solve the problems: 1) the release of the compiler JPL
 had was installed at MMC for use by the software still in development and
 2) the release of the MMC compiler was installed at JPL for use when
 needed. (pp. 34-35)

 ... The operating system [on MMC's CDC computers] was changed from MACE to
 SCOPE during the period in which the software was being developed. This
 change caused many schedule impacts in the Viking software development.
 Much time was spent by the development programmers changing their job
 control cards, their file naming conventions, their file structures, and
 in learning how the system worked. This coupled with extra down time and
 running of two operating systems caused much confusion.
 (p. 35)

 QUANTITATIVE IMPACT: ... The conversion process represented approximately
 five percent of the development effort for 1108 programs, and approximately
 ten percent of the development effort for 360 programs.
 (p. 36)

 Martin Marietta Corporation,
 Viking
 Software Data: Final Technical Report (15MB PDF), 1977

 May 1977, RADC-TR-77-168.

I haven't read Martin Marietta's report from cover to cover, but I have read
substantial amounts in the operations software and flight software sections.
The prose is not dry and Martin Marietta was honest about what techniques
and practices worked and which didn't and why. Again, another
sort-of-Voyager-related-but-not-really document you can dive into
on any page and enjoy.

I was unable to find an online copy of 1973's
"Characteristics of
FORTRAN" (download page for brief-description PDF) by W.R. Garner of
Martin Marietta, which detailed the differences between Fortran on the
IBM 360, Univac 1108, and CDC 6000s. Nor was I able to find a copy of
Martin Marietta's Viking Flight Operations Programmer Guide
(mentioned in the Viking Software Data report), which
described the minimal subset of Fortran to be used at MMC.

However, I did came across another, slightly later instance of Martin
Marietta converting a Fortran program developed on the CDC 6500 to run
on a Univac 1108. In this case, the program implemented a contamination
model for the ESA
Spacelab flown on
multiple Space Shuttle missions. The target 1108 was located at NASA's
Marshall Space Flight Center in Huntsville, AL. This 1976 requirements
study detailed the differences between FORTRAN IV on the CDC 6500 and
FORTRAN V on the Univac 1108:

 This study was performed in order to determine the modifications necessary
 to convert the Martin Marietta Aerospace (MMA) Spacelab Contamination
 Computer Model, written for a CDC 6500 computer, for use on a Marshall
 Space Flight Center (MSFC) computer ...

 Major differences between the CDC 6500 and UNIVAC 1108 are memory capacity,
 word length, and various specific functional capabilities. The CDC 6500
 uses Fortran IV whereas, the UNIVAC 1108 uses Fortran V control language.
 None of the differences are such as to create any great difficulties in
 program conversion and a good programmer, familiar with the contamination
 program, should be able to process the necessary changes with minimum
 difficulty, knowing the differences.

 —L.E. Bareiss, V.W. Hooper, E.B. Ress, and D.A. Strange,
 "Payload/Orbiter
 Contamination Control Requirement Study - Computer Interface Study",
 Final Report, p. ii, September 30, 1976.

 	Essential Reading

 	Command Sequences & Flight Software

 	Other Sources

 	Multimedia!

 	Unrelated

Bibliography

 Note: If you search the web for "Voyager" articles/papers published
 earlier than 1977, you won't find any! Voyager was originally called
 the "Mariner Jupiter-Saturn 1977" project and only renamed "Voyager"
 in 1977, several months before launch.

Essential Reading

 I recommend reading Tomayko's Computers in Spaceflight,
 Chapter 6-2 first as knowledge of the Voyager flight computing hardware
 will help when reading the other texts. Then, Matsumoto's paper provides
 an excellent overview and details about the current (as of 2016) state
 of the spacecraft and the full range of efforts needed to extend the
 life of the spacecraft as long as possible.

 Following those two, I recommend McEvoy's paper for its detailed
 description of spacecraft command sequencing and CCS simulation for
 the Viking Orbiter. Adamski's paper, under "Other
 Sources", covers similar territory for Voyager, with a slightly
 differing focus. McEvoy's paper gets down into some of the software
 details, but they're
 both very interesting, so read both!

 Tomayko, James E.
 Computers
 in Spaceflight: The NASA Experience (36MB PDF; higher quality
 500MB PDF),
 1988. The archived, easier-to-navigate HTML version:

	Title
 Page

	Table
 of Contents

	Chapter
 Five, Section 6, "Viking computer systems" (details the Orbiter CCS
 computer used for Voyager's CCS and AACS computers)

	Chapter
 Six, Section 2, "Voyager - The flying computer center"

	Chapter
 Eight, Section 3, "Unmanned mission control computers"

 Matsumoto, Sun Kang.
 "Voyager
 Interstellar Mission: Challenges of Flying a Very Old Spacecraft on
 a Very Long Mission" (PDF),
 2016 SpaceOps Conference, Daejeon, Korea.

 Matsumoto's paper was a pleasure to read the first time, but it wasn't
 until the second read for the purposes of this page that I realized how
 packed it is with information about the Voyager hardware, software, and
 operations. Aside from the treasure trove of information, the paper
 also gives you a good idea of the kinds of real problems the Voyager
 team has had to deal with over the decades and the many constraints
 under which they diagnose and solve problems. Some other papers I
 discovered later provide similar insights into the Voyager environment
 in the pre-VIM era (1970s and 1980s): Brooks;
 McLaughlin and Wolff; and
 Morris. But Matsumoto remains essential reading.
 (Matsumoto
 is the Voyager Fault Protection and CCS Flight Software Systems Engineer.)

 McEvoy, Maurice B.
 "Viking
 Orbiter Uplink Command Generation and Validation via Simulation"
 (PDF), The Institute for Operations Research and the Management
 Sciences (INFORMS)
 Winter
 Simulation Conference 1975 Conference Proceedings.

 McEvoy's paper was in an important source for me as it supplied much
 needed details about sequencing that I hadn't found in earlier reading.
 Written and published before the Viking launches, the paper presents a
 refined, sophisticated, mature sequence development and simulation process,
 or so it seemed to me. I assumed that the Viking experience and many of
 the associated software tools could have been reused on the Voyager project.
 After writing most of this web page, I discovered
 Brooks's paper in which he described the somewhat
 chaotic, rough and tumble evolution of Voyager sequencing, both before
 and continuing after launch. I began to wonder if McEvoy was
 perhaps giving us a distinctly rose-colored view of Viking sequencing.
 Be that as it may, the details about sequences and simulation are no less
 useful.

Command Sequences & Flight Software

 In addition to Matsumoto's and McEvoy's papers immediately above ...

 The full texts of papers annotated as "(abstract)" can be found online
 with some effort.

 Adamski, Terrence P.
 "Command and Control
 of the Voyager Spacecraft" (abstract),
 American Institute of Aeronautics and Astronautics (AIAA),
 25th AIAA Aerospace Sciences Meeting, March 24-26, 1987, Reno, Nevada.

 Adamski's paper is similar to McEvoy's above.
 Whereas McEvoy gets down into some of the computing details of
 sequencing (e.g., SEQGEN and OSTRAN), Adamski provides a fuller
 overview of the entire sequencing process from initial science
 proposals to the final review and uplink approval of a sequence.
 This bureaucracy, vitally important for the planetary encounters,
 was streamlined and downsized for the interstellar mission, as
 described in Linick and Weld below.
 (Adamski was the Voyager Flight Operations Manager.)

 Brooks, Robert N., Jr.
 "The Evolution
 of the Voyager Mission Sequence Software and Trends for Future Mission
 Sequence Software Systems" (abstract), American Institute of
 Aeronautics and Astronautics (AIAA), 26th Aerospace Sciences Meeting,
 January 1988, Reno, NV.

 This was a late addition to my reading, unfortunately, tracked down via
 a citation in another paper. As the title suggests, Brooks recounts
 the pre- and post-launch evolution of the Voyager sequencing process.
 The process presented here is very rough around the edges, in contrast
 to McEvoy's smoothly functioning, Viking Orbiter
 sequencing process. Brooks does go into considerable detail about the
 Univac-based sequencing software. I was delighted to discover that the
 sequence engineers, like any good engineers, wrote unofficial programs
 to assist in their analysis and design of sequences — in
 BASIC! Being interpreted, these programs were convenient to use and
 modify and, equally importantly, they were invisible to the POISON
 program! POISON scanned the computer, looking for unofficial programs
 in an attempt to ensure that only officially sanctioned software was
 used to produce uplink loads. The penultimate section in the paper
 discusses JPL's research into a role for AI in sequence design and
 development, something that would not be out of place in the 2020s!
 (And was not out of place in the 1980s either.)

 Linick, Susan H. and Weld, Kathryn R.
 "Voyager Uplink
 Planning in the Interstellar Mission Era", SpaceOps 1992:
 Proceedings of the Second International Symposium on Ground Data Systems
 for Space Mission Operations, March 1, 1993.
 (PDF)

 Although over 30 years old now, this paper provides a more modern look
 at Voyager sequencing, especially the move off of the Univac mainframes
 onto PCs and, because of the reduced workforce, the streamlining of the
 sequencing process. Linick and Weld do get into some of the details of
 the technical challenges and constraints, but the paper strikes me as
 mostly a management view of the redesign that, understandably because
 it's not the focus of the paper, lacks the hardware and software details
 I would have liked.

 McLaughlin, W.I. and Wolff, D.M.
 "Voyager Flight
 Engineering: Preparing for Uranus" (abstract), American Institute of
 Aeronautics and Astronautics (AIAA), 23rd Aerospace Sciences Meeting,
 January 1985, Reno, NV.

 This paper explores some of the flight software and sequencing changes
 planned for Voyager 2's 1986 Uranus fly-by. Other papers
 describe sequencing in fairly general terms, but McLaughlin and Wolff
 examine actual, concrete problems and proposed solutions in detail.
 The paper covers a number of areas, but a few stood out for me:
 (1) working around the reliance on Voyager 2's partially
 failed backup radio receiver; (2) offloading image compression duties
 to the backup FDS computer; (3) figuring out how usable the scan
 platform's crippled actuator was; and (4) preventing image smear
 during the long exposure times required for Uranus and Neptune.
 Another item of interest to me: flight software was written to
 alleviate the CCS computer's limited memory by storing not-yet-needed
 sequences in the FDS memory. Since this paper was written pre-encounter,
 I can't tell if this capability was ever uploaded and used.

 Morris, Ray B.
 "Sequencing
 Voyager II for the Uranus Encounter" (abstract),
 American Institute of Aeronautics and Astronautics (AIAA),
 Astrodynamics Conference, August 1986, Williamsburg, VA.

 Like the others, Morris's paper also describes the sequencing and
 simulation process. Where Morris really comes into his own is when
 he delves into the operational limitations of sequences and how the
 Voyager team worked around them. A very important example is that
 the pre-planned, planetary encounter sequences must be uplinked
 before the flyby, but must be able to be updated as observations
 closer to the planet provide more accurate information and reveal
 needed changes. This requirement was met by the introduction of
 movable blocks for the observations and late stored
 updates. I'm not sure I understand them completely, but you
 get the idea. (Morris was the Voyager Flight Engineering Office
 Sequence Team Chief.)

 NASA.
 "Voyager
 Approach to Maintaining Science Data Acquistion for a 30 Year Extended
 Mission", 1997.

 Hat tip originally to
 Peter
 Barfuss and then to
 Matthias
 S. Discovered too late to be a source for me, this is a 1997 draft of
 a proposed plan for the next 30 years of operations. Based on estimates
 of power loss, the proposal gives approximate dates of shutdown for the
 different science instruments and systems. Those dates are obviously
 out-of-date as instrument failures and especially engineering insights
 have helped slow the loss of power and extend the lives of the spacecraft
 over the years.

 Of particular interest to me, however, was the in-depth discussion
 of the sequencing strategy in the Voyager Interstellar Mission (VIM):
 the baseline sequence (long-term, repetitive operations);
 overlay sequences (scheduled operations in a shorter term,
 e.g., 6 months); and mini-sequences (as-needed, one-time
 operations). The proposal also details the Backup Mission Load
 (BML, invoked when a spacecraft is unable to receive commands
 from the ground) and the Fault Protection Algorithms (FPAs).

 (Archived
 copy via the Wayback Machine;
 abridged
 version on an official NASA website.)

Other Sources

 I encountered a lot of articles online that were reworkings either of
 Mann's 2013 Wired article or of Wenz's 2015 Popular
 Mechanics article. I haven't included them here unless I
 specifically reference them in this piece.

 The full texts of papers annotated as "(abstract)" can be found online
 with some effort.

 Assessment of Autonomous Options for the DSCS III Satellite
 System, Prepared for the U.S. Air Force by JPL personnel
 (Donna L. S. Pivirotto and Michael Marcucci?),
 "Volume III:
 Options for Increasing the Autonomy of the DSCS III Satellite"
 (8MB PDF), August 6, 1981.

 Appendix B is a "Summary of JPL Experience in On-Board Computing vs.
 Autonomy for Viking and Voyager".

 Berglund, Dennis E.; Goodman, Irving; Patterson, William J.;
 and Reiner, Julius.
 Hard
 Preprocessor Study (11MB
 PDF),
 AFAL-TR_75-157, 1975.

 This General Electric report to the U.S. Air Force includes a description
 of the compact packaging of Voyager's FDS RAM chips on p. 67. (Link
 posted
 by Steven Pietrobon in an online forum.)

 Campbell, James K.; Synnott, Stephen P.; and Bierman, Gerald J.
 "Voyager
 Orbit Determination at Jupiter" (PDF), IEEE Transactions on
 Automatic Control, Vol. AC-28, No. 3, March 1983.

 Cosmic Ray Subsystem.
 "Cosmic
 Ray Subsystem Report on the Voyager-2 Flight Data System Anomaly and the
 Subsequent Data Impact" (PDF), 2010, Appendix A, p. 8.

 Hat tip to
 Remes.
 This is a report by the CRS team on how the 2010 FDS memory anomaly
 affected the processing of CRS science data. Appendix A is a fairly
 detailed account (via emails) of the diagnosis and resolution of the
 anomaly.

 Culver, John.
 "The CPUs of
 Spacecraft Computers in Space", The CPU Shack.

 Data General
 Fortran 5
 Documentation, including the
 Fortran 5
 Reference Manual (10MB PDF).

 Eickhoff, Jens. Onboard Computers, Onboard Software and Satellite
 Operations, 2012. Chapter 3.2.2, "Transistor based OBCs with
 CMOS Memory: The Voyager 1/2 Missions", pp. 35-37.

 Fenelon, Pete.
 "Academic
 Programmers - A Spotter's Guide", University of York, 1997?

 Gugliotta, Guy.
 "Historic
 Voyager Mission May Lose Its Funding", The Washington Post,
 April 3, 2005.

 Heacock, Raymond L.
 "The
 Voyager Spacecraft" (abstract),
 Proceedings of the Institution of Mechanical Engineers,
 Vol. 194, June 1980.

 Heacock's paper is widely cited because it provides a concise, readable,
 detailed description of the components on the spacecraft, excluding the
 science instruments. He includes some history of the mission and the
 reasoning behind some of the component/configuration designs. (Heacock
 was the Voyager Project Manager when this paper was published.)

 Jones, Christopher P. and Risa, Thomas H.
 "The Voyager
 Spacecraft System Design" (abstract), American Institute of
 Aeronautics and Astronautics (AIAA) 16th
 Annual Meeting and Technical Display on Frontiers of Achievement,
 May 12-14, 1981, Long Beach, California.

 Hat tip to
 Remes
 for this citation. I found this well after I wrote most of this web page,
 but the paper discusses reasons behind certain design decisions and
 provides some interesting details about the flight computers and software
 that I hadn't found elsewhere. I've long been unsuccessfully trying to
 find a copy of Jones's 1985 paper,
 "Engineering
 Challenges of In-Flight Spacecraft - Voyager: a Case History", in the
 October 1985 issue of the Journal of the British Interplanetary
 Society. Incidentally, Jones was apparently Mr. Photogenic Rock
 Star of Voyager — you can purchase
 wall
 art of him, although I doubt he receives any remuneration! (That's
 a model of Voyager in the upper right corner of the picture and it gives
 you a good idea of the length of the boom, always abbreviated in line
 drawings.)

 Kehr, Joachim J.
 "Voyager —
 The Right Staff" (PDF), April 2016. Kehr was the editor of
 SpaceOps News, of the Journal of Space Operations
 & Communicator; this article was apparently not published.

 Kobele, P.
 "Maintainability
 of Unmanned Planetary Spacecraft: A JPL Perspective" (abstract),
 American Institute of Aeronautics and Astronautics (AIAA)/NASA
 Maintainability of Aerospace Systems Symposium, July 1989, Anaheim, CA.

 Kobele examines how anomalous conditions are/were handled in the Mars
 Viking Orbiter, Voyager, and the Jupiter
 Galileo
 Orbiter. (Galileo hadn't been launched yet at the time
 of publication.) Whereas the continuation of science observations has
 been a priority for Voyager when an anomaly occurs, the philosophy
 on Galileo was to put the spacecraft in a stable
 configuration ("safe hold") and await instructions from the ground.
 Since Galileo was an orbiter, it made sense to postpone
 science observations to later orbits and instead protect the health
 of the spacecraft.

 Kobele describes notable Viking and Voyager anomalies, but, again,
 Galileo had yet to be launched and anomalies like the
 failed deployment of the high-gain antenna were still in the future.
 The paper finishes up with an in-depth look at "lessons learned",
 which is quite good.

 Kohlhase, Charles, ed.
 The Voyager
 Neptune Travel Guide, 1989. (Download page for 116MB PDF)

 A late addition ... This is a beautiful 290-page book, even in its
 black-and-white PDF form, written in an easy-going, engaging style.
 The purpose of the book is to get the reader excited about (i)
 the wonders of space and (ii) the wonders of the technology
 used to explore space. It's aimed at the educated layperson. Some
 familiarity with space and spacecraft probably helps, but I think a
 neophyte could just accept what they don't understand and still revel
 in the wonder of it all. I've only read the first 40 pages and I
 learned a lot; for example, one of the reasons the scan platform is
 mounted on a boom is so that, post-encounter, the cameras can look
 back at a receding planet without their view being blocked by the
 high-gain antenna. Fascinating!

 The hard-copy version of the book features a flip-book animation of the
 Neptune/Triton encounter. Someone with patience could snip the
 approximately 130 graphics from the PDF and produce an animated GIF.
 (Kohlhase
 was Manager of Voyager Mission Analysis and Engineering.)

 Also see The
 Voyager Uranus Travel Guide, 1985. (Download page for 14MB PDF)

 Laeser, Richard P.
 "Voyager —
 Uranus at Our Doorstep" (abstract),
 Acta Astronautica, Volume 14, 1986.

 Laeser, Richard P.
 "Engineering
 the Voyager Uranus Mission" (abstract),
 Acta Astronautica, Volume 16, 1987.

 The first paper turned out to not be pertinent to my Fortran 5 inquiry,
 but it is nevertheless a very interesting read. Writing before
 the 1986 Uranus encounter, Laeser goes into good detail about two serious
 Voyager 2 problems with the spacecraft's radio receivers and
 the scan platform, describing how the engineers figured out what the
 problems were and how to work around them. The second paper was written
 after the successful Uranus encounter and is a similar, somewhat
 complementary paper. (Laeser was the Voyager Project Manager in the 1980s.)

 Laeser, Richard P.; McLaughlin, William I.; and Wolff, Donna M.
 "Engineering
 Voyager 2's Encounter with Uranus" (paywall), Scientific
 American, November 1986, pp. 36-45.

 As you would expect from Scientific American, this is a
 well-written article with high-quality color pictures and graphics!
 It provides a detailed look at the challenges and problems that needed
 to be overcome to achieve a successful encounter with Uranus (and then
 Neptune). This is well-worth reading if you can find a copy.

 Lasser, Allan.
 "Freedom
 of Information Request: Voyager Command & Analysis Software Source
 Code", MuckRock Foundation, submitted October 3, 2016 to NASA's
 Jet Propulsion Laboratory.

 This was not a source for me, but you'll see it frequently referenced
 online. In his FOIA request, Lasser requested the source code for the
 "command and analysis software" per Mann's 2013 Wired
 article, which he quotes. The request was not
 successful as the source code and documentation are the property of
 Caltech (a "contractor"), not NASA. According to
 Wikipedia,
 JPL had its origins in work done in the 1930s. In 1943, the group became
 a U.S. Army contractor and assumed the name "Jet Propulsion Laboratory".
 In the 1950s, JPL did work for NASA and, in 1958, it officially became
 a part of NASA (while still remaining a contractor apparently).

 Leibson, Steven.
 "Voyagers
 1 and 2 Take Embedded Computers into Interstellar Space",
 EE Journal, July 25, 2022.

 Leibson, Steven.
 "JPL
 Software Update Rescues Failing Voyager 1 Spacecraft",
 EE Journal, May 27, 2024.

 These two articles were the first detailed discussions I found beyond
 Tomayko's report of the electronic components
 in the Voyager flight computers. They inspired me to write the
 Electronics section of this page and
 gave me a stepping-off point into further research.
 (Other articles)

 Ludwig,
 Roger and
 Taylor,
 Jim.
 "Voyager
 Telecommunications" (3MB PDF), Article 4, March 2002, of
 JPL DESCANSO Design & Performance
 Summary Series.

 A number of other sources also describe Voyager 2's receiver
 problem, but this paper about Voyager radio communications provides more
 radio- and electronics-focused details (pp. 39-40). Other sources also
 give slightly different numbers for the 100-KHz and 100-Hz PLL ranges,
 but they all round off to Ludwig's and Taylor's values, so I use the
 latter in the text of my web page. Telecommunications-specific actions
 in the Backup Mission Load (BML) are detailed on p. 41.

 Magnin, Vincent.
 "A
 patch was sent to Voyager 2 yesterday", Fortran Discourse,
 October 2023.

 Throughout this discussion on a Fortran forum, Magnin provided useful
 commentary and links to sources, some in common with mine and others new
 to me. Aside: Browsing the
 Fortran
 Discourse forum was very enlightening for me. I had read about
 Fortran 90 when its standard was released over 30 years ago, but I had no
 occasion to use it and I haven't kept up with subsequent versions. It's
 changed! My hat's off to modern-day Fortran developers. (Although we
 were no slouches back in the heady days of VAX/VMS Fortran 77.)

 Matsumoto's paper was a key source for me. In
 researching this web page, I downloaded PDFs left and right and I didn't
 keep track of how I learned about the documents in the first place. A
 couple of months after writing this web page, I noticed that the file
 timestamp of Matsumoto's paper on my PC differed by only a few minutes
 from another source (Eickhoff) which I definitely learned about from
 Vincent Magnin's posts. So I'm pretty sure I have Vincent to thank
 for the very important Matsumoto link — Thank you,
 Vincent!

 Mann, Adam.
 "Interstellar
 8-Track: How Voyager's Vintage Tech Keeps Running", Wired,
 September 2013.

 NASA.
 "Calculating
 Trajectories and Orbits", NASA Tech Briefs, September 1989,
 p. 33. (COSMIC catalog entry for the Orbit Determination Program.)

 NASA.
 Voyager
 Press Kit (6MB PDF), August 4, 1977. (Pre-launch)

Patel, K.; Reinholtz, W.; and Robison, W.
 "High
 Speed Simulator — A Simulator for All Seasons"
 (PDF),
 SpaceOps 1996, Proceedings of the Fourth International
 Symposium, September 16-20, 1996, Munich, Germany.

 Post, Ed.
 "Real
 Programmers Don't Use Pascal", Datamation, July 1983,
 "READERS' FORUM", pp. 263-265.
 (HTML version; the
 full
 magazine issue is available as a 51MB PDF.)

 Rasmussen, R.D. and E.C. Litty.
 "A Voyager Attitude
 Control Perspective on Fault Tolerant Systems" (abstract),
 American Institute of Aeronautics and Astronautics (AIAA)
 Guidance and Control Conference, August 19-21, 1981,
 Albuquerque, New Mexico.

 The above is a very interesting paper about fault detection, isolation,
 and management on the Voyager spacecraft, with a special focus on the
 AACS. It does get into some of the details about cross-strapping,
 about which I posed questions in
 "Sequences and Simulators" above.

 Reddit
 AskScience
 AMA Series: We're the team that fixed NASA's Voyager 1 spacecraft and
 keeps both Voyagers flying. Ask us anything!, July 16, 2024.

 The Voyager team made themselves available for an Ask Me Anything (AMA)
 session on Reddit's AskScience group. The introduction began with the
 November 2023 FDS memory anomaly, but questions were not limited to that
 subject in particular. David Cummings (DC) and Robert Rasmussen (BR/RR)
 had the most familiarity with the software and hardware aspects of the
 anomaly and thus provided the most insightful replies regarding the
 anomaly. I was surprised that Sun Matsumoto and/or Lu Yang did not
 participate in the session and I would like to have heard from them.
 (I check the AskScience group every so often and unfortunately missed
 this by a couple of weeks — a lost opportunity!)

 Sharwood, Simon.
 "Has
 Voyager 1 escaped the Sun yet? Yes, but also no, say boffins",
 The Register, October 30, 2015.

 South Australian Doctor Who
 Fan Club Inc. (SFSA), "Voyagers disco party!",
 The Wall of Lies, No. 169, Nov-Dec 2017, p. 2.
 (4-page newsletter,
 PDF)

 Stanley, A.G.; Martin, K.E.; and Price, W.E.
 "Voyager
 Electronic Parts Radiation Program (Volume I)" (abstract, 9MB
 PDF),
 1977. (Hat tip to
 Remes.)

 Tingley, Kim.
 "The
 Loyal Engineers Steering NASA's Voyager Probes Across the Universe",
 New York Times, August 3, 2017.

 UNIVAC
 1108 System Description (14MB PDF), 1970. (FORTRAN V
 description in Section 10, pp. 7-12.)

 UNIVAC 1108 FORTRAN V Programmer's Reference Manual, 1966,
 Artifact
 Details (not the actual manual) at the Computer History Museum.

 Univac ASCII
 FORTRAN Reference Manual (download page for 65MB PDF).

 Urban, Michael G.
 "Voyager
 Image Data Compression and Block Encoding", International
 Telemetering Conference, October 26-29, 1987, San Diego, California.

 Hat tip to
 LouScheffer.
 This paper describes FDS software enhancements for Voyager 2's
 encounters with Uranus and Neptune: dual processor operations, image data
 compression, and use of the Reed-Solomon encoding hardware for downlink
 data. Most of the math parts are beyond me, but the implementation
 details were very interesting. Urban's paper is also included in the
 full 1987
 ITC
 Conference Proceedings along with other Voyager-related papers.

 Wenz, John.
 "Why
 NASA Needs a Programmer Fluent in 60-Year-Old Languages",
 Popular Mechanics, October 29, 2015.

 Wood, Lincoln J.
 The
 Evolution of Deep Space Navigation: 1962-1989" (PDF),
 31st Annual AAS Guidance and Control Conference,
 2008, Breckenridge, Colorado.

 Zierler, David.
 "Suzy
 Dodd (BS '84), Engineer and Deep Space Pioneer",
 Caltech Heritage Project, June 9, 2023.

 Wikipedia (abridged list). There is actually a whole forest of Wikipedia
 pages I used, following links here and there, but these are a few of the
 main ones:

	Data General
 and DG Nova

	Fortran

	Viking program

	Voyager program

	Voyager 1

	Voyager 2

	Control
 Data Corporation,
 CDC 6000 series,
 and CDC
 display code

	IBM,
 360,
 370,
 and EBCDIC

	UNIVAC,
 1100/2200 series,
 and FIELDATA

Multimedia!

 I believe Aaron Cummings's YouTube video showed up in search results
 when I was looking up information about the Voyager computers. I
 learned about the two movies (and lots of other information) from
 the Ars Technica community.

 Cummings, Aaron.
 "Uptime 15,364
 days - The Computers of Voyager" (YouTube), Strange Loop Conference,
 September 14, 2019.

 A video of a 30-minute presentation followed by a 10-minute Q&A
 session. A great speaker and my only complaint is that the presentation
 wasn't longer. I didn't really find out anything new about the computers
 since Cummings drew from many of the same sources as me, but there was a
 lot of information about the mission history, hardware, and communications
 that I found very interesting. He noted the lack of information about the
 flight software. Also, people had told him the flight software was in
 Fortran, but he didn't buy it (at 17:21 in the videos). His
 reference
 list has additional links to a variety of information about the
 spacecraft and mission.

 The
 Farthest
 (IMDB), 2017.
 (Watch on PBS)

 A 90-minute documentary film about the Voyager program. In contrast
 to the present-day focus of It's Quieter in the Twilight,
 this movie documents the early years of the program and the four
 planetary encounters: Jupiter, Saturn, Uranus, and Neptune. (The
 film does take a brief look at the interstellar mission towards the
 end.) There's a lot of contemporary news and science footage and
 a lot of looking-back commentary from people who'd been with the
 project since the beginning. This movie documents the science and
 technology of Voyager, whereas It's Quieter in the Twilight
 is a lower-key recording of the everyday life of the current Voyager team.
 The former gives the big picture and the latter provides some insight into
 the unglamorous world of maintaining two spacecraft more than 10 billion
 miles away. Watch both!

 It's Quieter
 in the Twilight
 (IMDB), 2022.

 An 80-minute documentary film about the Voyager team prior to and into
 the 2020 COVID-19 pandemic. They worked in a garden-office complex next
 to a McDonald's, about a mile from the JPL campus. (And had been doing
 so for a couple of decades?) During the pandemic, their offices were
 moved back to JPL.

 After the Neptune encounter, Voyager 2 angled south of the
 ecliptic (planetary) plane as it headed out into space. As a result,
 the spacecraft can only be "seen" from the Australian Deep Space Network
 (DSN) station and commands can only be sent to Voyager 2
 using that station's 70-meter dish antenna. An
 11-month-long,
 major upgrade to the aging antenna was scheduled to begin in
 February 2020. During the upgrade, commands could not be sent to
 Voyager 2, but smaller antennas were available for
 receiving engineering and science data from the spacecraft.
 A good part of the film revolves around the preparations of
 Voyager 2 for this downtime and then the downtime
 itself. Some unexpected and unwanted drama occurred right before
 the upgrade when a
 routine
 "MAG roll" went awry. NASA admirably delayed the upgrade until March
 so the Voyager team could figure out what had happened and successfully
 finish preparing Voyager 2 for 11 months of command-less
 travel. A
 test
 transmission or transaction of some kind was made in October 2020
 prior to the 70-m dish returning to
 full
 operational status in February 2021.

 Waggoner, Bruce.
 "Saving
 Voyager 1! - Bruce Waggoner at !!Con 2024" (YouTube),
 !!Con 2024, August 25, 2024.

 A video of a 35-minute presentation about Voyager 1's
 November 2023 FDS memory anomaly, how JPL determined its cause,
 and how they recovered from it. Very interesting with a lot of
 detailed text slides and graphics. Waggoner is the Mission
 Assurance Manager for Voyager and many other JPL projects and
 he provides useful commentary on what they did well and what
 they didn't, in both the past and present. (And which hopefully
 they will improve upon in the future!)

Unrelated to Voyager

 The full texts of papers annotated as "(abstract)" can be found online
 with some effort.

 Bareiss, L.E.; Hooper, V.W.; Ress, E.B.; and Strange, D.A.
 "Payload/Orbiter
 Contamination Control Requirement Study - Computer Interface Study",
 Final Report, September 30, 1976.

 Quoted in Clash of Viking Mainframes above.

 Butrica, Andrew J.
 "Voyager:
 The Grand Tour of Big Science", Chapter 11,
 From
 Engineering Science to Big Science, Pamela E. Mack, ed., 1998.

 Yes, this obviously is related to Voyager, but I quote it in
 Clash of Viking Mainframes above. Butrica
 provides a very detailed account of the evolution of the Voyager Project
 beginning with discussions of a Grand Tour in 1965. This evolution in a
 mix of competing scientific goals, engineering challenges, administrative
 concerns, and politics (read: money) is very interesting.

 Holmberg, Neil A.; Faust, Robert P.; and Holt, H. Milton.
 Viking '75
 Spacecraft Design and Test Summary, Volume II: Orbiter Design
 (NASA Reference Publication 1027), November 1980. (Download page for
 13MB PDF)

 Quoted in the
 Sequences and Simulators section.

 Jansma, P.A.
 Open!
 Open! Open! Galileo High Gain Antenna Anomaly Workarounds (abstract).
 Proceedings of the IEEE Aerospace Conference 2011, March 2011,
 Big Sky, Montana.

 In 1991, Galileo's high-gain antenna failed to fully deploy,
 leaving the Jupiter-bound spacecraft dependent on its 10-bit-per-second
 low-gain antennas to eventually return tens of gigabytes of science and
 image data to Earth. Thanks to advancing radio technology on the ground
 and significant flight software changes and hardware configuration updates
 on the spacecraft, the
 Galileo
 project achieved most of its originally planned science goals. Jansma's
 extremely well-written article gives a history of the project, descriptions
 of the hardware and science instruments, details of the flight software,
 and an in-depth account of the high-gain antenna problem and the
 development of workarounds. Not Voyager-related, but the paper's
 highlighting of flight software will give you some idea of the challenges
 flight software engineers faced on Viking, Voyager, and other missions.

 Martin Marietta Corporation.
 Viking
 Software Data: Final Technical Report (15MB PDF), May 1977,
 RADC-TR-77-168. Of interest: "Mission Operations Software Techniques"
 (ground system), pp. 4-101 and "Flight Software Techniques" (Lander only),
 pp. 102-159.

 Inspiration for the Clash of Viking
 Mainframes section above. Although not Voyager-related, this
 report will give you some insight into the mainframe computing
 environment of JPL's spacecraft ground systems.

 Viking project hearings before the Subcommittee on Space Science
 and Applications "of the Committee on Science and Astronautics,
 U.S. House of Representatives, Ninety-third Congress, second session,
 November 21, 22, 1974 [i.e. 1975]",
 "Flight
 Software Technical Problems".

 Referenced in
 Shoestring Space Exploration.
 The link above takes you to the beginning of a set of slides about the
 flight software, which is how I discovered this hearing. Don't limit
 yourself to that brief presentation — random browsing in the
 document will land you on interesting testimony by NASA personnel and
 exchanges with congressmen. This is not directly related to Voyager,
 but I suspect Voyager management was well aware of the trials and
 tribulations of their Viking counterparts!

Change Log

 The web page was originally written in February-April 2004 and it focused
 on debunking the Voyager-Fortran 5 meme, with added sections
 "Shoestring Space Exploration",
 "Sequences and Simulators",
 "AACS, HYPACE, and HYBIC", and
 "Miscellaneous Information".
 The following is a rough change log beginning a few months after that.
 I continue updating and elaborating the original portions of the web
 page when I come across new information, but these changes are minor
 and generally aren't noted in the change log.

September 2024: Added the
"FDS Image Compression" section.
Added an opinionated "lack of assemblers"
subsection to "Shoestring Space
Exploration. Incorporated information from Bruce Waggoner's
"Saving Voyager 1" presentation into that
subsection and into the "FDS Memory
Problems" section.

August 2024: Added the "Flight Computer
Electronics" and "FDS Memory Problems"
sections. Began trying to properly credit people through whom I learned
about the different sources of information I cite.

OEBPS/Images/datamation-July-1983.jpg

OEBPS/Images/voyager-aacs-block-diagram.jpg
AACS FUNCTIONAL BLOCK DIAGRAM

JPL
VOYAGER S/C 32
. . FCP1 { FCP-2
(CPU) (cPU)
A : H
'MEMORY
1881 Wi HYBIC-1 | {HYBIC-2
WF) e » (F)
T 5 DRIRU | T i
§ SA AZ/EL .
4 _TCAPU _ *
BRANCH-1
CST-1 |, russau —ul0pitchiyaw|| | [NOT PART' *
(Roll Axis) 2 Roll L OF AA(:S_‘I
BRANCH-2
SS1 L, 4 pitch/yaw !
(Pitch / Yaw Axis) 2 Roll
TCM /AP
SA L[_dThsters |
Pots-1 FDS
(i Eeaton) CCs

Prime

B

MEMORY
4K RAM
18 BIT WIDE

CST-2

(Roll Axis)

§S8-2

(Pitch / Yaw Axis)

SA
Pots-2

(Azimuth/Elevation)

OEBPS/Images/cover.jpg
Voyager

Elsle)
Fortran 5 —
g 6

OEBPS/Images/urban-table-1.png
Table 1:

Pixel Difference Integer Mapping

DIFFERENCE INTEGER

AQ =PQ) - BG-1) 30
0 0

+1 1

-1 2

2 3

2 4

+3 5

OEBPS/Images/viking-ccs-simulator.png
\\\
cC's
0C's
i

~
OVERRIDES

NOONI

T
|
o2 ol
x G 1T
] & wm.Tm.Twm,m
L- [|
I I
STIVD 135 2
H
<. el 2,015
-]
NEIG wm..Tmcﬂvmm 12
I 5
I
*ﬂ
|
|

CCSIM

{

INTERRUPTS

OEBPS/Images/voyager-univac.jpg
THE PIRANHA CLUB

BUD GRACE

| YOU ACTUALLY PAID
FOR A\Y BOUGHT

,w(‘é« L
HC T
s |

ks - Bors

L SAVED A FEL BU
AND &OT AN OLDER.
USED KDL

oed

Figure 7. Computer cartoon

OEBPS/Images/cc-logo.png

OEBPS/Images/viking-orbiter-simulator.png
DESIRED —— .
CCSIFDS 0COMSM \ 3';5’&"
Woros Csmumanon —— I 71 CommANDS

| controL

TIMING
JOSCILLATOR
DRIFT

CCSIFDS
= MEMORY
MASK

/

RAW UPLINK

e | g [0 1| S
CONTROL J SIMULATOR
COMMANDS, STATE

|
e — | -
— BT
;lg:)lJT‘PALIT‘IlON ccs \ ESTIMATE \
CONTROL - SIMULATOR —jconthoL)
A imauzarion L | | ./ COMMANDS,
N remieve CONTROLLER | | PN
PREVIOUS |—> w HISTORY
s) 955 L E S5 HISTORY
@ simoation | «—" | Simutator 5 EVENT COMPARES
CONTROLLER 2 o TELEMETRY
\ N PREDICTIONS
£ CCSIFDS
— 05 et = | MEMORY DULIPS
0 post ‘ |
CONTROLLER SIMULATOR) |
| |
lard
|

T

OEBPS/Images/ceramic-flat-pack.png

OEBPS/Images/voyager-suzanne-dodd.jpg

OEBPS/Images/voyager-1-celebrate.jpg

OEBPS/Images/cc-by.png

OEBPS/Images/voyager-1-interstellar.jpg
‘Stagnation region
A

Ifiner edge ™ Tormination
113 AU) 'shock

OEBPS/Images/voyager-rca-table.png
Field-usage operating-life data on CD4000A family of high-reliability integrated circuits (MIL-STD-883
slash-series types)

1ToS Atmosphere Satcom Voyager
I Satelite Oscars | DIF/IG/M' | Explorer C/D/E? | FUF2S 1728
Time in orbit (months) 32 85 49 165 52
Number of units %0 168 7200 1652 10346
Device—hours 2073600 | 2585520 84,672,000 9,812,880 193,677,120
Number of rejects o o] o 2
Failure rate (%/1000 hrs)3 ¢ 0045 0035 0001 00092 00016
MTTF (hrs)? 2360000 | 2.900.000 96,000,000 10750000 63,000,000
Total davice hours 252,819,000
Total failure rate 3 ¢ 00011
Total MTTF hrs? 94,000,000

“Satelite O orbi T 23 monis.F 36 monihs, G 34 monins A1 25 monie
SRE/G oot e 34 moniis, AE/D, 4 monihs. AE/E 11 months

Eators rates and MTTF présentod ol 60 percent 1-sded -colidence lvel

“Operating temperature range 25°C to 125°C; no acceleration factor used

A sl i 1 10 o 2. 6. math

[Nayager + it tme s 27 manths. vayager 2 oro i 1 26 morts as of OGt 1980

OEBPS/Images/voyager-art.jpg

OEBPS/Images/voyager-team.jpg

OEBPS/Images/voyager-fds-memory.jpg
MJS77 FDS
2006A4A1
SN 003

OEBPS/Images/voyager-fds.jpg

OEBPS/Images/flat-pack-mount.jpg
Sy e
3R e

OEBPS/Images/urban-table-2.png
Table II: Pixel Block ID Mapping

BLOCK COMPRESSED WORD DIFFERENCE

D LENGTH k()). bits RANGE
001 1 0. +1
010 2 -1, +2
011 3 -3, +4
100 4 7. +8
101 5 .15, +16
110 6 3L 432
111 (NOT USED)

000 (SEND UNCOMPRESSED 8-bit PIXELS)

OEBPS/Images/voyager-problems.jpg
Problems

Voyager 1
* PPS failed (3/5/79)
* PLS failed (11/23/80)
* FDS memory B failed (10/6/81)
¢ X-band TWT failed (10/29/87)
Voyager 2
Telemetry system degraded (9/23/77)
PPS, MAG, IRIS, CRS, PRA, PWS, LECP degraded (various)
Command receiver #1 failed (4/5/78)
Command receiver #2 degraded (4/6/78)
NA camera sensitivity degraded (8/1/81)
Scan platform AZ actuator stuck (8/26/81): later fixed

OEBPS/Images/waggoner-slide-31.png
Getting Lucky

* Saturday, March 9 YT —
* Analysis of the decoded data revealed we had a
FULL MEMORY DUMP, (by sheer accident). 1 TR Moots
* Further analysis revealed 256 contiguous words ol
with corruptions - -

« Addresses 1400 — 14FF (hex) = EEE. oo
« These locations contained subroutines S =
shared by ALL of the P-Tables.

* Sunday, March 10
* The problem was traced to a single RAM chip
responsible for the 5t bit in each address
location.

* The team finally understood the anomaly source.

s document has been reviewed and determined not to contain export controlled CUI

OEBPS/Images/voyager-rose-bowl.jpg

